
Warbler: A Lightweight Pseudorandom Number Generator for EPC C1
Gen2 Passive RFID Tags

 Kalikinkar Mandal, Xinxin Fan and Guang Gong
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

Abstract

A pseudorandom number generator is an
important component for implementing security
functionalities on RFID tags. Most previous
proposals focus on true random number generators
that are usually inefficient for low-cost tags in terms
of power consumption, area, and throughput. In this
contribution, we propose a lightweight
pseudorandom number generator (PRNG) for EPC
Class-1 Generation-2 (EPC C1 Gen2) RFID tags.
The proposed PRNG fully exploits nonlinear
feedback shift registers and provides 16-bit random
numbers that are required in the tag identification
protocol of the EPC C1 Gen2 standard. The
generated sequences are able to pass the EPC C1
Gen2 standard's statistical tests as well as the NIST
randomness test suite. Moreover, a detailed
cryptanalysis shows that the proposed PRNG is
resistant to the most common attacks such as
algebraic attacks, cube attacks, and time-memory-
data tradeoff attacks. In particular, the proposed
PRNG can be implemented on low-cost Xilinx
Spartan-3 FPGA devices with 46 slices.

1. Introduction

 Radio Frequency Identification (RFID) is a
promising technology for automatic identification of
remote objects. In an RFID system, each object is
labeled with a small transponder, called an RFID tag,
which receives and responds to radio-frequency
queries from a transceiver, called an RFID reader.
An RFID tag is composed of a tiny integrated circuit
for storing and processing identification information,
as well as a radio antenna for wireless data
transmission. There are three basic types of RFID
tags: active, semi-passive, and passive tags. Active
tags contain internal batteries so that they can
initialize communications with the reader, whereas a
passive tag does not contain any battery, it solely
obtains power from the reader for both computation
and communication. Semi-passive tags use batteries
only to power their circuit and harvest power from
the reader for communication. Passive RFID tags
usually have constrained capabilities in every aspect
of computation, communication and storage due to
the extremely low production cost. The reading

range of a passive tag is up to several meters. For
most RFID applications, the security and privacy are
important or even crucial requirements [16]. Since
most protocols for securing RFID systems proposed
so far are based on the usage of an on-board true
random and/or pseudorandom number generator
(TRNG/PRNG), a number of solutions have been
proposed in the literature for implementing
TRNGs/PRNGs on RFID tags [2, 7, 15, 19, 20, 22].
In particular, the EPCglobal Class-1 Generation-2
(EPC C1 Gen2 in brief) standard [10] uses a couple
of 16-bit random numbers in the tag identification
protocol. All of the proposals for TRNGs are based
on analog circuits that sample a random physical
phenomenon like thermal noise. To the best of our
knowledge, only three PRNGs have been proposed
for EPC C1 Gen2 passive tags [7, 20, 22], among
which two proposals use TRNGs as a component and
the security properties of those two PRNGs rely on
the security of TRNGs.
 Considering the high power consumption, large
area and low throughput of TRNGs, we propose a
lightweight PRNG for low-cost EPC C1 Gen2 tags in
this paper. The basic idea of our design is to replace
the TRNG in [7, 20] by a lightweight pseudorandom
sequence generator with good statistical properties.
To this end, nonlinear feedback shift registers
(NFLSRs) have been fully exploited in our design.
The security properties of the proposed PRNG are
analyzed in great detail by using cryptographic
statistical tests specified by the EPC C1 Gen2
standard as well as the NIST test suite. Various
cryptanalysis techniques have been applied to
demonstrate the attack resistant properties of the
proposed PRNG. Furthermore, a hardware
implementation on a Xilinx Spartan-3 FPGA device
shows that the new PRNG can be implemented using
46 slices.

1.1. EPC C1 Gen2 Protocol

 The EPC C1 Gen2 was approved as ISO 18000-6C
standard in 2006 for global use. Figure 1 shows an
overview of the tag identification protocol. In the
EPC C1 Gen2 tag identification protocol, two main
operations, namely inventory and access, are
performed for managing the tag population. In the
inventory operation (Steps 1-4 in Figure 1), after

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 82

receiving a request from the reader, a tag generates a
16-bit random number, denoted by RN16, and
temporarily stores the number in a slot counter.
When the slot counter is zero, the tag backscatters
RN16 to the reader. Thereafter, the reader copies
RN16 to an acknowledgement packet to be sent to the
tag. When the tag receives the acknowledgement
packet, it first compares the random number in the
acknowledgement packet with RN16. If these two
numbers are the same, then the tag backscatters the
acknowledgement packet.

Figure 1. EPC C1 Gen 2 Tag Identification Protocol

 In the access operation (Steps 5-7 in Figure 1), after
receiving a request, denoted by ReqRN, from the
reader, the tag compares the random number in the
request ReqRN with the stored RN16. If these two
random numbers match, then the tag generates
another random number RN16', which is called
handle and backscatters it to the reader. Then the
reader issues the commands such as Read, Write, and
BlockWrite. Steps 8-10 in Figure 1 demonstrate a
further access operation. Note that for each access
operation the tag generates a new random number.

2. Related Work

 In this section, we give a brief overview of three
previous PRNG proposals for EPC C1 Gen-2 passive
RFID tags.

2.1. Che et al.’s PRNG

 Che et al. [7] designed a PRNG based on a
combination of an oscillator-based TRNG and a
linear feedback shift register (LFSR) with 16 stages.
In their design, the TRNG is implemented using an
analog circuit and exploits thermal noise of the
circuit. To introduce randomness, one truly random
bit from the TRNG is XORed with each bit of a 16-
bit sequence generated from the LFSR. In 16 clock
cycles, a 16-bit random number is generated by the
PRNG. Due to the linear structure, Che et al.'s

scheme has been attacked by Melia-Segui et al. in
[20] with a high success probability 𝑛+1

8𝑛
, where n is

the length of the LFSR.

2.2. Melia-Segui et al.’s PRNG

 To avoid such an attack on Che et al.'s PRNG,
Melia-Segui et al. [20] proposed a similar design by
employing multiple primitive polynomials instead of
one in the LFSR. The design consists of a true
random source, a module with eight primitive
polynomials, and a decoding circuit taking inputs
from the true random source, where the decoding
circuit is designed in such a way that the same
primitive polynomial is not chosen consecutively. At
each clock cycle, one primitive polynomial is chosen
according to the decoding logic and true random bits
for producing a pseudorandom bit. Thus, the PRNG
produces a 16-bit random number in 16 clock cycles
and the security of the PRNG relies on the TRNG.

2.3. Peris-Lopez et al.’s PRNG

 In [22], Peris-Lopez et al. proposed a PRNG named
LAMED for RFID tags, which is in compliance with
the EPC C1 Gen2 standard and can provide 32-bit as
well as 16-bit random numbers. The basic operations
for updating the internal state of LAMED consist of
bitwise XOR operations, modular algebra, and bit
rotations. The internal state of the LAMED is of 64-
bit, including a 32-bit key and a 32-bit initial vector.
The key length can be further increased by replacing
the IV bits with the key bits. Note that the LAMED
always outputs a 32-bit random number and a 16-bit
random number is obtained by dividing 32-bit
number into two equal halves and XORing them
together.

3. Preliminaries

 In this section, we define some terms and notations
that will be used to describe the proposed
pseudorandom number generator.

Notations:

- 𝐹2 = 𝐺𝐹(2) = {0,1}: the Galois field with
two elements.

- 𝑝(𝑥) = 1 + 𝑥 + 𝑥3 + 𝑥4 + 𝑥5: a primitive
polynomial over 𝐹2.

- 𝐹25 = 𝐺𝐹(25): the extension field of 𝐹2
with 25 elements. Let α be a primitive
element of 𝐹25 such that 𝑝(𝛼) = 0.

- 𝑇𝑟(𝑥) = 𝑥 + 𝑥2 + 𝑥22 + 𝑥23 + 𝑥24: the
trace function from 𝐹25 to 𝐹2.

Definition 1. The linear span (LS) or linear
complexity of a binary sequence is defined as the

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 83

length of the smallest linear feedback shift register
which generates the entire binary sequence.

Definition 2. A binary sequence with period 2𝑛 − 1
is called a span n or modified de Bruijn sequence if
each non-zero n-tuple occurs exactly once in a
period.

Definition 3. Two periodic sequences of the same
period are called shift distinct of each other if one
sequence cannot be obtained from the shift
equivalent of the other sequence.

Definition 4. An imbalance range of a binary
sequence is the absolute difference between the
number of zeros and ones in a period.

The WG Transformation: Let m mod 3 ≠ 0, 3k
mod m = 1 and ℎ(𝑥) = 𝑥 + 𝑥𝑞1 + 𝑥𝑞2 + 𝑥𝑞3 +
 𝑥𝑞4 where 𝑞𝑖 's are given by 𝑞1 = 2𝑘 + 1, 𝑞2 =
 22k + 2𝑘 + 1, 𝑞3 = 22k − 2𝑘 + 1, 𝑞4 = 22k +
2𝑘 − 1. Then the function WGP(), mapping from
𝐹2𝑚 to 𝐹2𝑚, given by

WGP(𝑥) = ℎ(𝑥 + 1) + 1
is called the WG permutation and the function 𝑓
from 𝐹2𝑚 to 𝐹2 given by
 𝑓(𝑥𝑑) = 𝑇𝑟� WGP(𝑥𝑑)�, 𝑥 ∈ 𝐹2𝑚
is known as the WG transformation with decimation
𝑑, where 𝑑 is co-prime to 2𝑚 − 1 [12]. The WG
transformation has excellent cryptographic properties
such as high nonlinearity, algebraic degree and at
least 1-order resiliency for a proper selection of
basis. Moreover, a sequence generated by the WG
transformation has high linear complexity.

4. Description of the Proposed PRNG

 The proposed PRNG is composed of two main
building blocks. The first one consists of two
NLFSRs of length 17 and 18 over 𝐹2, each one
generating a span n sequence or modified de Bruijn
sequence with optimal linear complexity, whereas
the second one includes an NLFSR over 𝐹25 and
each NLFSR uses one or two WG transformation
modules. In our design, the binary sequence
generated by the first building block is converted to a
sequence over 𝐹25 and this sequence is used in the
recurrence relation in the second building block. The
final output sequence is filtered by the WG
transformation and n-bit random numbers are
generated by taking disjoint n-bit sequences from the
final output sequence. A high-level architecture of
the proposed PRNG is illustrated in Figure 2.

Figure 2. A Diagram of the PRNG for EPC C1 Gen2
Tags

4.1. Building Block I: An Alternative to
TRNG

 The first building block contains two NLFSRs
whose lengths are chosen to be co-prime in order to
achieve the maximum period. The reason that two
shorter NLFSRs are used instead of a long one is due
to the impossibility of generating shift distinct
sequences from a long NLFSR for different initial
states. In other words, by XORing the output
sequences from two NLFSRs we can obtain shift
distinct sequences for different initial states. In our
design, the WG transformation with decimation
𝑑 = 3 over 𝐹25, denoted by WG5 in Figure 2, is used
as a nonlinear feedback function to generate span n
sequences. For 𝑚 = 5, the WG permutation is
defined as
 𝑊𝐺𝑃5(𝑥) = 𝑥 + (𝑥 + 1)5 + (𝑥 + 1)13 +
 (𝑥 + 1)19 + (𝑥 + 1)21, 𝑥 ∈ 𝐹25
and the WG transformation over 𝐹25 is given by

𝑓(𝑥) = 𝑇𝑟� 𝑊𝐺𝑃5(𝑥)� = 𝑇𝑟(𝑥19), 𝑥 ∈ 𝐹25 ,
which has the maximum nonlinearity 12, the
algebraic degree 3 and the maximum algebraic
immunity 3. The n-stage nonlinear recurrence
relation is defined as
𝑏𝑛+𝑘 = 𝑏𝑘 ⊕ 𝑓(𝑥𝑑), 𝑥 = �𝑏𝑟1+𝑘 , … , 𝑏𝑟5+𝑘� ∈ 𝐹25

for all 𝑘 ≥ 0, and 0 < 𝑟1 < ⋯ < 𝑟5 < 𝑛 are tap
positions of two NLFSRs, where ⊕ denotes addition
over 𝐹2. Using the parameters and recurrence
relations in Table 1, we can generate two span n
sequences 𝒃 = {𝑏𝑖}𝑖≥0, and 𝒄 = {𝑐𝑖}𝑖≥0 with
NLFSR1 and NLFSR2, respectively. The output
sequence of the first building block is denoted
by 𝒔 = {𝑠𝑖} = {𝑏𝑖 ⊕ 𝑐𝑖}, 𝑖 ≥ 0 which is almost
balanced and has the following statistical properties:

a) The period is (218 − 1)(217 − 1) ≈
235;

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 84

b) The imbalance range is 4; and
c) The linear span is (218 + 217 − 4) ≈

 218.58.
For different initial states of the NLFSRs, the
number of shift distinct sequences s is equal
to (218 − 1)(217 − 1) − 2.

Table 1. Parameters and Statistical Properties of Two
NLFSRs

NLFSR Len
gth

Tap position
(𝑟1 … 𝑟5)

Period Linear
Span

NLFSR1 18 4, 7, 8, 10, 15 218 − 1 218 − 2

NLFSR2 17 4, 7, 8, 9, 12 217 − 1 217 − 2

 We now generate a new sequence 𝒕 = {𝑡𝑘}𝑖≥0 over
𝐹25 from s as follows
 𝑡𝑘 = (𝑠5𝑘, 𝑠5𝑘+1, … , 𝑠5𝑘+4) ∈ 𝐹25 ,𝑘 ≥ 0.
Note that the sequence t is a shift distinct sequence
for different initial states of the NLFSRs and the
linear complexity of sequence t is bounded below by
 218.58 as 𝐹25 and 𝐹2 have the same characteristic
[17]. The sequence t is used in the second building
block for introducing nonlinearity in the recurrence
relation in each 5 clock cycles (see Section 5 for
details). This building block is used as an alternative
to the TRNG in [7, 20].

4.2. Building Block II: Pseudorandom
Number Generator

 The second building block consists of an NLFSR
and two WG transformation modules given by 𝑓(𝑥)
and 𝑓(𝑥3), respectively. Letting the length of
NLFSR3 be 𝑙 = 6 and the primitive polynomial
be 𝑔(𝑥) = 𝑥6 + 𝑥 + 𝛾 , where 𝛾 = 𝛼15 ∈ 𝐹25 , the
recurrence relation is defined as
𝑎𝑘+6 = 𝛾𝑎𝑘 + 𝑎𝑘+1 + 𝑤𝑘 + 𝑡𝑘,𝑎𝑖 ∈ 𝐹25 ,𝑘 ≥ 0 (1)
where 𝑤𝑘 = (0, 0, 0, 0, 𝑓(𝑎𝑘+5)) is the nonlinear
feedback with the least signification bit generated by
the WG transformation 𝑓(𝑥) and 𝒕 = {𝑡𝑘}𝑖≥0 is the
sequence over 𝐹25 that is defined in the previous
subsection. While the WG transformation 𝑓(𝑥) (i.e.,
VWG5 in Figure 1) is only used as a nonlinear
feedback function in NLFSR3, the WG
transformation 𝑓(𝑥3) (i.e., WG5 in Figure 1) is
employed to generate nonlinear feedback for
NLFSR1 and NLFSR2 as well as to filter the output
sequences. In the above recurrence relation (1), the
nonlinearity is introduced by 𝑡𝑘 and 𝑤𝑘 and those
feedback will affect other bit positions after
multiplying by 𝛾. Note that the period of the
sequence 𝒂 = {𝑎𝑘}𝑖≥0 is a multiple of the period of t.
Moreover, the final output sequence 𝒐 = {𝑜𝑘} of the
second building block is defined by 𝑜𝑘 = 𝑓(𝑎𝑘+53)
for 𝑘 ≥ 0. The period of o is a multiple of 2

35

5
=

 232.67, and the linear complexity of o is lower
bounded by the linear complexity of t.

4.3. System Initialization

 The proposed PRNG has an internal state 65 bits,
including a 45-bit secret seed as well as a 20-bit
initial vector (IV). While the secret seed and the IV
are preloaded into RFID tags at the very beginning,
the 20-bit IV is also updated at the end of each
protocol session. Before generating random numbers,
a 36 rounds of initialization phase is applied to mix
the key and IV properly. In our design, the secret
seed and IV are preloaded as follows: the first
consecutive 12, 11 and 22 positions of NLFSR1,
NLFSR2 and NLFSR3 are respectively reserved for
key bits, whereas the remaining positions in each
NLFSR are for the IV. The initialization process is
illustrated in Figure 3. During the initialization phase
the internal states of the three NLFSRs are updated
as follows:
𝑏18+𝑘 = 𝑏𝑘 ⊕ 𝑓(𝑥3) ⊕𝑜𝑘,
𝑥 = (𝑏𝑘+4, 𝑏𝑘+7,𝑏𝑘+8,𝑏𝑘+10,𝑏𝑘+15),𝑘 ≥ 0, 𝑜0 = 0,
𝑐17+𝑘 = 𝑐𝑘 ⊕ 𝑓(𝑦3) ⊕𝑜𝑘,
𝑦 = (𝑐𝑘+4, 𝑐𝑘+7, 𝑐𝑘+8, 𝑐𝑘+9, 𝑐𝑘+12),𝑘 ≥ 0, 𝑜0 = 0,
𝑠𝑘+4 = 𝑏𝑘 ⊕ 𝑐𝑘, 𝑘 ≥ 0, 𝑠𝑗 = 0, 𝑗 = 0, 1, 2, 3,
 𝑡𝑘 = (𝑠𝑘, 𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3 𝑠𝑘+4) ∈ 𝐹25 ,𝑘 ≥ 0,
𝑎𝑘+6 = 𝛾𝑎𝑘 + 𝑎𝑘+1 + 𝑤𝑘 + 𝑡𝑘,𝑎𝑖 ∈ 𝐹25 , 𝑘 ≥ 0,
𝑤𝑘 = �0, 0, 0, 0, 𝑓(𝑎𝑘+5)�,𝑘 ≥ 0,
𝑜𝑘+1 = 𝑓(𝑎𝑘+53),𝑘 ≥ 0,
where 𝑏18+𝑘, 𝑐17+𝑘 and 𝑎𝑘+6 are the updated values
of NLFSR1, NLFSR2 and NLFSR3, respectively,
and 𝑤𝑘 is generated by the WG transformation 𝑓(𝑥).
Sequence {𝑠𝑘} is the XOR sequence of two output
bits from NLFSR1 and NLFSR2 and five
consecutive 𝑠𝑘’s are collected to form a 5-bit vector
𝑡𝑘. The output 𝑜𝑘 of NLFSR3 is used as a nonlinear
feedback to affect the internal states of both
NLFSR1 and NLFSR2.

Figure 3. Key Initialization Phase

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 85

Remark 1. A 20-bit IV can be generated from the
initial SRAM state of tags when tags are powered up
(see [15]). The entropy of IV can also be increased
by employing the von Neumann technique, which
can be efficiently implemented in hardware [24].
However, the implementation of these components
needs additional hardware support.

5. Security Analysis of the PRNG

 The security analysis of the proposed PRNG is
conducted in two steps. In the first step, we
performed all cryptographic statistical tests that are
specified in the EPC C1 Gen2 standard [10] and the
NIST standard [23] on several sets of pseudorandom
sequences generated by the proposed PRNG with
different initial states. In the second step, we
investigate the attack resistant properties of the new
PRNG by launching the algebraic attacks, cube
attacks, and time-memory-data tradeoff attacks.

5.1. Randomness Analysis of the PRNG

 According to the EPC C1 Gen2 standard, a true
random or pseudorandom number generator must
satisfy the following three statistical properties:

- Probability of a single sequence: The
probability that any 16-bit random sequence
(RN16) drawn from the PRNG has value j,
shall be bounded by
 0.8

216
 ≤ Pr(𝑅𝑁16 = 𝑗) ≤ 1.25

216
 for any j.

- Probability of simultaneously identical
sequences: For a tag population up to
10,000, the probability that any of two or
more tags simultaneously generate the same
sequence of bits shall be less than 0.1%,
regardless of when the tags are energized.

- Probability of predicting a sequence: A
sequence drawn from the PRNG 10ms after
the end of transmission shall not be
predictable with a probability greater than
0.025% if the outcomes of prior draws
from the PRNG, performed under identical
conditions, are known.

 We implemented our PRNG in software for
checking whether the proposed PRNG meets the
above three criteria. To verify the first criterion, we
generated 18 different test sequences for different
initial states of the NLFSRs and calculated the
probability of occurrence of 16-bit numbers. Our
experimental results show that the probability of any
16-bit number j, i.e., Pr (𝑅𝑁16 = 𝑗) lies between
0.9409
216

 and 1.0693
216

, which are better bounds than those
obtained in [20]. The upper and lower bounds of
probability values for different tests are given in 2nd
and 3rd columns in Table 2. With respect to the
second criterion, our PRNG can generate up to
245 − 1 shift distinct sequences for different keys to

each tag, since the sequence t generated in Section
4.1 is shift distinct. Thus the probability that any two
tags will generate the same sequence with period at
least 232.67 is approximately 2−45 that is much less
than 0.1%. For the third criterion, given a 16-bit
random number, an attacker can recover the internal
state of NLFSR3 with probability 2−24 after getting
80 bits of the sequence s. To obtain the next 16-bit
random number from the given one, the adversary
needs to know the next consecutive 80 bits of the
sequence s and the internal state of NLFSR3. The 80
bits can be obtained either by guessing or obtaining
about 2

18.58

5
= 216.26 consecutive random numbers.

Due to the high linear span of the sequence s, it is
impossible to generate the next consecutive 80 bits
from previous known 80 bits in practice.
Furthermore, it is also difficult for an adversary to
intercept 216.26 consecutive random numbers in one
protocol session because the communication session
in RFID systems is usually quite short and the IV is
different. Moreover, the secret seed can also be
updated for different sessions. Hence, the attacker
can guess the next 16-bit random number with the
better probability 2−16, which is much less than
0.025% as specified in the EPC C1 Gen2 standard.

 To measure the linear dependency between an n-bit
output and the previous n-bit output, we performed a
serial correlation test [18] on the sequences
generated by the PRNG. We generated 18 distinct
sequences for different initial values of the NLFSRs,
each one is of size 226 bytes and calculated the serial
correlation coefficient for 1-bit, 1-byte and 2-byte
lag. Our experimental results demonstrate that the
serial correlation coefficients are close to zero, which
indicates the good randomness of the generated
sequences. The serial correlation coefficients for
different sequences are given in 4th, 5th and 6th
columns of Table 2.

Table 2. The First and Third Requirements

Seq. Upper Lower 1-bit 1-byte 2-byte
S1 1.0471 0.9497 0.000098 -0.000080 -0.000061
S2 1.0476 0.9530 -

0.000012
0.0000025 -0.000055

S3 1.0444 0.9555 0.000094 -0.000064 -0.000006
S4 1.0693 0.9517 -

0.000075
0.000106 -0.000046

S5 1.0468 0.9537 0.000057 0.000041 -0.000041
S6 1.0440 0.9545 -

0.000012
0.000012 0.000078

S7 1.0457 0.9550 -
0.000063

-0.000028 0.000080

S8 1.0454 0.9560 0.000025 0.000085 0.000032
S9 1.0533 0.9550 -

0.000002
-0.000005 -0.000042

S10 1.0483 0.9544 0.000082 -0.000023 0.000023
S11 1.0541 0.9532 0.000045 -0.000033 0.000046
S12 1.0456 0.9514 0.000030 0.000026 0.0000012
S13 1.0487 0.9493 -

0.000006
0.000101 0.000071

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 86

S14 1.0494 0.9523 -
0.000053

-0.000047 0.000036

S15 1.0506 0.9550 -
0.000075

-0.000091 -0.000086

S16 1.0302 0.9850 0.000015 0.000004 -0.000106
S17 1.0499 0.9505 -

0.000091
0.000025 -0.000067

S18 1.0533 0.9409 0.000012 -0.000028 -0.000043

 Different from the statistical tests in the EPC C1
Gen2 standard, the NIST test suite contains 15
demanding statistical tests for characterizing the
randomness of a binary sequence. According to the
NIST specification [23], a PRNG passes the test suite
successfully if it passes all the tests simultaneously
with a proportion of 96%. In our experiment, 10 test
sequence (TS) sets are generated, each of which has
100 different sequences with different initial values
and each sequence has a length of 225. We computed
the proportion values for each TS set and listed the
test results for 5 TS sets in Table 3. Non-overlapping
template matching test results are not given in Table
3 because of 148 entries. However, the proposed
PRNG has passed the test successfully. It is not
difficult to find out that each TS set can pass the
NIST test suite successfully.

Table 3. NIST Test Suite Results of our Proposal

5.2. Cryptanalysis of the PRNG

 In this subsection, the attack resistant properties of
the PRNG are investigated by considering the
algebraic attacks, cube attacks, and time-memory-
data tradeoff attacks in detail. Since our PRNG uses
nonlinear feedback shift registers over different
fields, we also explain below why the correlation
attacks [21], Discrete Fourier Transformation (DFT)
attacks [13], and differential attacks [25] are not
applicable.

5.2.1. Algebraic Attack

 Algebraic attack [8] is a powerful attack against
stream ciphers. In our PRNG design, nonlinear
feedback functions are used to update the internal
states of different NLFSRs and the output bits are
filtered by the WG transformation. Noting that the
length of the internal state of the PRNG is 65-bit and
the length of the secret key is 45-bit, one can reduce
the PRNG to a system of linear equations with about
245 unknown variables after applying the
initialization round, which can be solved by
approximately 7

64
(245)𝑙𝑜𝑔2(7) operations. As a result,

the algebraic attack is not better than the exhaustive
search in this case.

Tests TS1
Proportion

TS2
Proportion

TS3
Proportion

TS4
Proportion

TS5
Proportion

Frequency 0.97 1.00 0.99 0.98 1.00
Block-frequency 0.99 1.00 0.98 0.99 1.00
Cumulative-sum 0.97, 1.00 1.00, 1.00 0.97, 0.97 0.99, 0.99 0.99, 1.00
Runs 1.00 0.98 1.00 0.99 1.00
Longest-run 0.98 1.00 0.98 0.99 0.98

Rank 0.99 1.00 0.99 1.00 0.99
DFT 1.00 1.00 0.98 1.00 0.99
Overlapping-templates 0.96 0.97 0.97 0.97 0.99

Universal-statistics 0.99 0.98 1.00 1.00 0.98
Approximate entropy 0.99 1.00 0.98 0.97 0.99
Serial 0.99, 0.98 0.98, 0.98 1.00, 1.00 1.00, 1.00 0.99, 1.00

Linear-complexity 0.99 0.99 0.98 0.99 0.99
Random-excursions 0.97, 0.90 0.98, 1.00 0.98, 1.00 1.00, 0.99 0.99, 0.97
 0.97, 0.97 0.98, 0.97 1.00, 0.99 1.00, 0.98 0.98, 0.97

 0.98, 1.00 0.97, 0.97 1.00, 0.99 0.98, 0.97 0.99, 1.00
 0.97, 0.96 0.98, 0.97 0.98, 0.97 0.99, 0.98 1.00, 0.99
Random-excur- variant 0.98,0.98, 0.98 1.00,1.00, 1.00 1.00,1.00, 1.00 0.99,0.98, 0.99 0.98,0.97, 0.99

 0.98,0.98, 0.98 1.00,0.97, 1.00 1.00,1.00, 0.99 1.00,1.00, 1.00 1.00,1.00, 0.99
 1.00,1.00, 0.99 1.00,0.98, 0.98 1.00,1.00, 1.00 1.00,1.00, 1.00 0.99,1.00, 0.99
 1.00,1.00, 1.00 0.98,0.98, 0.98 1.00,1.00, 1.00 0.99,1.00, 0.99 0.99,0.99, 1.00

 0.98,0.98, 0.98 0.98,0.96, 0.96 1.00,1.00, 1.00 0.97,0.98, 1.00 1.00,0.98, 1.00
 1.00,1.00, 1.00 0.98,0.98, 0.98 1.00,0.99, 0.99 0.97,0.96, 0.96 1.00,0.99, 0.98

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 87

5.2.2. Cube Attack
 Cube attack [9] is a generic key-recovery attack
that can be applied to any cryptosystem, provided
that the attacker can obtain a bit of information that
can be represented by a low-degree decomposition
multivariate polynomial in Algebraic Normal Form
of the secret and public variables of the target
cryptosystem. According to the cube attack, our
PRNG can be regarded as a system of multivariate
polynomials 𝑝(𝑘1, … , 𝑘45,𝑣1, … , 𝑣20) with public IV
variables 𝑣1, 𝑣2 … , 𝑣20 and secret key
variables 𝑘1,𝑘2, … , 𝑘45. The polynomial
𝑝(𝑘1, … , 𝑘45,𝑣1, … , 𝑣20) =
 𝑡𝐼.𝑝𝑆(𝐼) + 𝑞(𝑘1, … , 𝑘45,𝑣1, … , 𝑣20) is called a master
polynomial, where 𝑡𝐼 = 𝑣𝑖1𝑣𝑖2 … 𝑣𝑖𝑘 is a monomial
with {𝑖1, 𝑖2, … , 𝑖𝑘} ⊆ {1, 2, … , 20} and 𝑝𝑆(𝐼) is called
a superpoly of 𝑡𝐼 in p. The term 𝑡𝐼 is called a
maxterm if 𝑑𝑒𝑔�𝑝𝑆(𝐼)� = 1. We implemented the
cube attack against our PRNG in CUDA and
exploited the power of a GPU (i.e, a Tesla C2070
from NVIDIA) for accelerating the computation
significantly. We took the first output bit after the
36-round initialization phase in order to find the
maxterms in the master polynomial and performed
an exhaustive search over all possible cube
dimensions ranging from 1 to 20. However, our
experiment did not find any linear and quadratic
superpoly equations for different cube dimensions.

5.2.3. Time-Memory-Data Tradeoff Attack

 Time-memory-data tradeoff attack is a generic
cryptanalytic attack which can be applied to any
cipher. In a stream cipher, the complexity of a time-
memory-data tradeoff attack depends on the length
of the internal state, which is given by 𝑂(2

𝑛
2), where

n is the length of the internal state [4]. We note that a
stream cipher with low sampling resistance is
vulnerable to a more flexible time-memory-data
tradeoff attack. In our PRNG, the WG transformation
is the filtering function as well as the internal state
update function and the number of terms in the
algebraic normal form representation of the WG
transformation is 15, among which only two terms
are linear and the remaining terms are either
quadratic or cubic. Only by fixing four input
variables in the WG transformation, one can obtain a
linear function in one variable. Thus, the sampling
resistance of the proposed PRNG is high. Since the
length of the internal state is 65-bit in our PRNG, the
expected complexity of the time-memory-data
tradeoffs attack is 𝑂(2𝑙), where l equals 32.5.

5.2.4. Other Attacks

 In the fast correlation attacks [21], the internal state
of an LFSR based stream cipher can be recovered by
first determining a system of linear equations
according to a statistical model and then solving the

system of linear equations. In our PRNG, the internal
state is updated in a nonlinear way. Thus it is hard
for an attacker to decide such a system of (non-)
linear equations according to some statistical models.

 For an LFSR based stream cipher, the DFT attacks
[13] can be applied when the exact linear complexity
of the output sequence and enough consecutive
output bits are known. In our PRNG, the exact linear
complexity and period of the output sequence are not
known for an initial state. Therefore, the DFT attacks
cannot be applied to our PRNG. Moreover, in the
EPC C1 Gen2 standard protocol, it is hard for an
attacker to obtain enough consecutive bits.

 A chosen IV attack on the original version of WG
cipher was presented in [25], where one can
distinguish several bits of the output sequence by
building a distinguisher based on differential
cryptanalysis. In our PRNG, two nonlinear terms
(i.e., an output from the WG transformation as well
as a 5-bit tuple generated by the first building block)
are added to the recurrence relation. Thus the
differentials after 36 rounds of the initialization
phase will contain most internal state bits. As a
result, it would be hard for an attacker to distinguish
output bits generated by the proposed PRNG.

5.3. Comparisons with Sponge-based
PRNGs

 A sponge-based PRNG is constructed using a
sponge function [3], which is composed of two
phases: an absorbing phase and a squeezing phase.
While truly random seeds are fed into the internal
state of the sponge function in the absorbing phase,
the squeezing phase outputs pseudorandom numbers
[3]. Any sponge-based hash function such as U-
QUARK [1], DM-PRESENT [6], PHOTON [14],
and SPONGENT [5] can be used to construct a
sponge-based PRNG. Since a sponge-based PRNG
requires a multiple seeding mechanism, one needs
additional random sources to provide multiple truly
random seeds to the PRNG while generating
pseudorandom numbers. Note that the multiple
seeding mechanism provides the forward secrecy for
the sponge-based PRNGs, which can also be
achieved by our PRNG provided that additional
random sources are available1

1 Assume that the length of a seed K is a multiple of
the length of the secret key
𝐾 = 𝑘1�|𝑘2|�… ||𝑘𝑟, 𝑟 ≥ 1. If a multiple seeding
mechanism is applied to our PRNG, the seed is
updated by repeating the following step r times:
𝑘𝑖 (𝑖 = 1, 2, … , 𝑟) is XORed with the values in the
key bit positions of the current internal state,
followed by an 18-round of the initialization phase.

. Moreover, our PRNG

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 88

design has desired randomness properties like period
and linear span (see Table 4).

6. Hardware Implementation

In this section we report efficient FPGA
implementation of the proposed PRNG core on the
low-cost Xilinx FPGA series Spartan-3 and
compare our results with other reported lightweight
PRNG implementations.

6.1. Target Platform and Design Tools

 FPGAs are composed of configurable logic blocks
(CLB) and a programmable interconnection network.
We implement the proposed PRNG core in VHDL
for the low-cost Spartan-3XC3S50 (Package PQ208
with speed grade -5) FPGA device from Xilinx [26].
Considering the availability of SRL16 in Spartan-3
generation of FPGAs, we have coded NLFSR1,
NLFSR2, and NLFSR3 properly to guide the
synthesis tool to infer SRL16 shift register cells,
which enables us to reduce the area of the resulting
implementation significantly. We use the integrated
FPGA development environment Aldec Active-HDL
9.1 for writing, debugging and simulating VHDL
codes. Furthermore, Synopsys Synplify Premier with
Design Planner E-201103-SP2 and Xilinx ISE
Design Suite v13.2 are employed for the design
synthesis and implementation, respectively.

 The PRNG core works as follows. Under the
control of clock enable pins CE1, CE2, and CE3, the
45-bit secret seed and 20-bit IV will be first loaded

into NLFSR1, NLFSR2, and NLFSR3 within 18
clock cycles through pins DIN1, DIN2, and DIN3,
respectively. After loading the required key and IV,
the initialization phase will be performed in the next
36 clock cycles without any output (i.e., CE5 is
disabled in this phase). The running phase will start
from the 55-th clock cycle and the PRNG core will
output one bit every five clock cycles under the
control of clock enable pins CE3 and CE5.

 The finite state machine (FSM) has two 1-bit input
signals CLK and RST and seven 1-bit output control
signals CE1-- CE5, Init, and Load. In our design, a
binary counter is used to keep track of the number of
clock cycles elapsed. The FSM starts by pulling up
the reset signal RST to ‘1’, which resets the counter
to be 0. At this time instance, the FSM sets two
control signals Init = ‘0’ and Load = ‘1’ and starts
loading key and IV. When the counter reaches a
values of 17, the FSM goes into the initialization
phase and two control signals become Init = ‘1’ and
Load = ‘0’, respectively. During the initialization
phase, the counter continues increasing by one at
every clock cycle until it hits a value of 53. The FSM
then transfers to the running phase. During the
running phase, both control signals Init and Load are
set to be ‘0’ and a 16-bit random number will be
generated every 16 clock cycles.

6.2. Hardware Architecture

 A top-level description as well as the data path of
the proposed PRNG core is illustrated in Figure 3.

 Figure 3. The Data Path of the Lightweight PRNG Core

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 89

6.3. Implementation Results and
Comparisons

 The hardware implementation shows that the
PRNG core totally occupies 46 slices (12 and 34
slices for building blocks I and II, respectively) on
the target FPGA device and achieves a throughout of
45 Mbps. Table 4 presents a comparison with other
PRNGs in terms of hardware implementation and
achieved randomness properties. One can notice that
our PRNG has a lower hardware complexity than
that in [22]. When compared to the PRNG proposed
in [20] our design costs a similar number of logic
gates with the usage of two NLFSRs replacing the
TRNG in [20]. However, if we only compare the
hardware implementation cost for the pseudorandom
number generator module (i.e., the building block II
in our design) in both proposals, our design only
needs a half number of logic gates as that in [20].
Although the hardware complexity of our PRNG is
slightly larger than that of SPONGENT-80 [5], our
design can provide desired randomness properties
such as period and linear complexity that cannot be
guaranteed by SPONGENT-80.

Table 4. A Comparison with Other PRNGs

Functions State
Size Area/GE Devices Randomness

Period LS

Our PRNG 65

46
Slices/
760 GE

(est.)

XC3S50-
PQ208 232.67 218.58

LAMED [22] 64 1585
GE - - -

Melia-Segui
et al. [20] 16 761 GE - - -

U-QUARK
[1] 136 1379

GE
0.18μm
CMOS - -

DM-
PRESENT -
80 [6]

144 1600
GE

0.18μm
CMOS - -

PHOTON-
80/20/16 [14] 100 865 GE 0.18μm

CMOS - -

SPONGENT-
80 [5] 88 738 GE 0.13μm

CMOS - -

 In terms of the time delay for generating the first
16-bit pseudorandom number, our design totally
requires 134 clock cycles, including 18 clock cycles
for loading key and IV, 36 clock cycles for the
initialization, and 80 clock cycles for generating the
first 16-bit random number. After that, each 16-bit
random number can be obtained every 80 clock
cycles. Assuming that the EPC tags run at the clock
frequency of 100 KHz and two 16-bit random
numbers are needed for the tag identification
protocol according to the EPC C1 Gen2 standard,

one can identify about 510 tags in one second by
using the proposed lightweight PRNG.

Remark 2. In the proposed PRNG, we can update
the 45-bit key at the end of each session by
generating 45 extra bits in 225 clock cycles and these
45 bits will be loaded at proper aforementioned key
positions. This key updating procedure can be used
to provide better security. In this way it is possible to
generate at least 216.26 × 220 consecutive random
numbers for one key and for different IVs.

7. Conclusions

 In this paper, we propose a lightweight
pseudorandom number generator that is in
compliance to the EPC Class-1 Generation-2
standard and has guaranteed randomness properties
like period and linear span. Considering the high
power-consumption, large area and low throughput
of TRNGs, we replace the TRNG used in previous
works by a PRNG with good statistical properties. In
our design, the pseudorandom sequence is generated
using a nonlinear feedback shift register. Moreover,
the statistical tests specified by the EPC C1 Gen2
and the NIST standards, algebraic attacks, cube
attacks and time-memory-data tradeoff attacks are
employed to characterize the security properties of
the proposed PRNG and a comparison with the
sponge-based PRNGs is conducted. In addition, an
FPGA implementation shows that the proposed
PRNG can be implemented using 46 slices and can
generate a 16-bit random number every 80 clock
cycles after an initialization process of 36 clock
cycles.

8. References

[1] J. Aumasson, L. Henzen, W. Meier, and M. Naya-
Plasencia, “QUARK: A Lightweight Hash” Cryptographic
Hardware and Embedded Systems - CHES 2010, Vol.
6225, LNCS, Springer-Verlag, 2010, pp. 1 - 15.
http://131002.net/quark/.

 [2] G.K. Balachandran, and R.E. Barnett, “A 440-nA True
Random Number Generator for Passive RFID Tags”,
IEEE Transactions on Circuits and Systems I: Regular
Papers, 55 (11), December 2008, pp. 3723 -3732.

[3] G. Bertoni, J. Daemen, M. Peeters, and G.V. Assche.
Sponge based Pseudo-random Number Generators,
Cryptographic Hardware and Embedded Systems -
CHES 2010, Vol. 6225, LNCS, pp. 33 – 47, Springer-
Verlag, 2010.

[4] A. Biryukov and A. Shamir, “Cryptanalytic Time
/Memory/Data Tradeoffs for Stream Ciphers”, Advances
in Cryptology-Asiacrypt'00, Vol. 1976, LNCS, Springer-
Verlag, 2000, pp. 1-13.

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 90

[5] A. Bogdanov, M. Knevzevic, G. Leander, D. Toz, K.
Varici, and I. Verbauwhede, “SPONGENT: A Lightweight
Hash Function”, Cryptographic Hardware and Embedded
Systems - CHES 2011, Vol. 6917, Springer-Verlag, 2011,
pp. 312-325.

[6] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M.
J.B. Robshaw, and Y. Seurin, “Hash Functions and RFID
Tags: Mind the Gap”, Cryptographic Hardware and
Embedded Systems - CHES 2008, Vol. 5154, LNCS,
Springer-Verlag, 2008, pp. 283 - 299.

[7] W. Che, H. Deng, X. Tan, and J. Wang, “A Random
Number Generator for Application in RFID Tags”, In
Networked RFID Systems and Lightweight cryptography,
Chapter 16, Springer-Verlag, 2008, pp. 279-287.

[8] N. Courtois and W. Meier, “Algebraic Attacks on
Stream Ciphers with Linear feedback Shift Registers”,
Advances in Cryptology-Eurocrypt'03, Vol. 2656, LNCS,
Springer-Verlag, 2003, pp. 345-359.

[9] I. Dinur, and A. Shamir, “Cube Attacks on Tweakable
Black Box Polynomials”, Advances in Cryptology-
EUROCRYPT'09, LNCS, Springer-Verlag, 2009, pp. 278-
299.

[10] EPCglobal. “EPC Radio-Frequency Identification
Protocol Class-1 Generation-2 UHF RFID for
Communication at 860-960 MHz”, 2008,
http://www.epcglobalinc.org/.

[11] S.W. Golomb and G. Gong, “Signal Design for Good
Correlation: For Wireless Communication, Cryptography,
and Radar”, Cambridge University Press, New York, NY,
USA, 2004.

[12] G. Gong and A. Youssef, “Cryptographic Properties
of the Welch-Gong Transformation Sequence Generators”,
IEEE Transactions on Information Theory, Vol. 48, No.
11, November 2002, pp. 2837-2846.

[13] G. Gong, S. Ronjom, T. Helleseth, and H. Hu, “Fast
Discrete Fourier Spectra Attacks on Stream Ciphers”,
IEEE Transactions on Information Theory, Vol 57, No.
8, August 2011, pp. 5555-5565.

[14] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON
Family of Lightweight Hash Functions”, Advances in
Cryptology-CRYPTO'11, Springer-Verlag, 2011, pp. 222 -
239.

[15] D.E. Holcomb, W.P. Burleson, and K. Fu, “Initial
SRAM State as a Fingerprint and Source of True Random
Numbers for RFID Tags”, In Proceedings of the
Conference on RFID Security (RFIDSec'07), July 2007.

[16] A. Juels, “RFID Security and Privacy: A Research
Survey”, IEEE Journal on Selected Areas in
Communications (J-SAC), Vol. 24, No. 2, February 2006,
pp. 381-394.

[17] A. Klapper, “Linear Complexity of Finite Field
Sequences over Different Fields”, International Workshop
on Sequence Design and Applications (IWSDA), Fukuoka,
Japan, October 2005.

[18] D.E. Knuth, The Art of Computer Programming,
Volume 2, Seminumerical Algorithms, Addison-Wesley,
1969.

[19] K. Mandal, X. Fan, and G. Gong, “Warbler: A
Lightweight Pseudorandom Number Generator for EPC C1
Gen2 Tags”, In Radio Frequency Identification System
Security, RFIDSec’11 Asia, Vol 8, November 2012, pp.
73-84.

[20] J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-
Joancomarti, “Analysis and Improvement of a
Pseudorandom Number Generator for EPC Gen2 Tags”,
Proceedings of the 14th International conference on
Financial Cryptography and Data Security, FC'10,
Springer-Verlag, 2010, pp. 34-46.

[21] W. Meier, and O. Staffelbach, “Fast Correlation
Attacks on Certain Stream Ciphers”, Journal of
Cryptology, 1989, pp. 159-176.

[22] P. Peris-Lopez, J.C. Hernandez-Castro, J.M. Estevez-
Tapiador, and A. Ribagorda, “LAMED - A PRNG for EPC
Class-1 Generation-2 RFID Specification”, Computer
Standard Interfaces, Vol. 31, January 2009, pp. 88-97.

[23] A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh,
M. Levenson, D. Banks, A. Heckert, J. Dray, S. Vo, M.
Smid, M. Vangel, A. Heckert, and L.E. Iii. “A Statistical
Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications”, Technical
Report, 2001.

[24] V.B. Suresh and W.P. Burleson. "Entropy extraction
in metastability-based TRNG", IEEE International
Symposium on Hardware-Oriented Security and Trust
(HOST 2010), June 2010, pp. 135-140.

[25] H. Wu, and B. Preneel, “Chosen IV Attack on Stream
Cipher WG”, ECRYPT Stream Cipher Project Report
2005/045, Available at
http://cr.yp.to/streamciphers/wg/045.pdf.

[26] Xilinx Inc., “Spartan-3 FPGA Family Data Sheet”,
DS099, December 4, 2009, available at
http://www.xilinx.com/support/documentation/datasheets/d
s099.pdf.

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 91

http://cr.yp.to/streamciphers/wg/045.pdf�

	1. Introduction
	2. Related Work
	3. Preliminaries
	4. Description of the Proposed PRNG
	4.1. Building Block I: An Alternative to TRNG
	4.2. Building Block II: Pseudorandom Number Generator
	4.3. System Initialization
	5. Security Analysis of the PRNG
	5.1. Randomness Analysis of the PRNG
	5.2. Cryptanalysis of the PRNG
	5.3. Comparisons with Sponge-based PRNGs
	6. Hardware Implementation
	6.1. Target Platform and Design Tools
	6.3. Implementation Results and Comparisons
	7. Conclusions
	8. References

