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Abstract 

A pseudorandom number generator is an 
important component for implementing security 
functionalities on RFID tags. Most previous 
proposals focus on true random number generators 
that are usually inefficient for low-cost tags in terms 
of power consumption, area, and throughput. In this 
contribution, we propose a lightweight 
pseudorandom number generator (PRNG) for EPC 
Class-1 Generation-2 (EPC C1 Gen2) RFID tags. 
The proposed PRNG fully exploits nonlinear 
feedback shift registers and provides 16-bit random 
numbers that are required in the tag identification 
protocol of the EPC C1 Gen2 standard. The 
generated sequences are able to pass the EPC C1 
Gen2 standard's statistical tests as well as the NIST 
randomness test suite. Moreover, a detailed 
cryptanalysis shows that the proposed PRNG is 
resistant to the most common attacks such as 
algebraic attacks, cube attacks, and time-memory-
data tradeoff attacks. In particular, the proposed 
PRNG can be implemented on low-cost Xilinx 
Spartan-3 FPGA devices with 46 slices. 

1. Introduction

  Radio Frequency Identification (RFID) is a 
promising technology for automatic identification of 
remote objects. In an RFID system, each object is 
labeled with a small transponder, called an RFID tag, 
which receives and responds to radio-frequency 
queries from a transceiver, called an RFID reader. 
An RFID tag is composed of a tiny integrated circuit 
for storing and processing identification information, 
as well as a radio antenna for wireless data 
transmission. There are three basic types of RFID 
tags: active, semi-passive, and passive tags. Active 
tags contain internal batteries so that they can 
initialize communications with the reader, whereas a 
passive tag does not contain any battery, it solely 
obtains power from the reader for both computation 
and communication. Semi-passive tags use batteries 
only to power their circuit and harvest power from 
the reader for communication. Passive RFID tags 
usually have constrained capabilities in every aspect 
of computation, communication and storage due to 
the extremely low production cost. The reading 

range of a passive tag is up to several meters. For 
most RFID applications, the security and privacy are 
important or even crucial requirements [16]. Since 
most protocols for securing RFID systems proposed 
so far are based on the usage of an on-board true 
random and/or pseudorandom number generator 
(TRNG/PRNG), a number of solutions have been 
proposed in the literature for implementing 
TRNGs/PRNGs on RFID tags [2, 7, 15, 19, 20, 22]. 
In particular, the EPCglobal Class-1 Generation-2 
(EPC C1 Gen2 in brief) standard [10] uses a couple 
of 16-bit random numbers in the tag identification 
protocol. All of the proposals for TRNGs are based 
on analog circuits that sample a random physical 
phenomenon like thermal noise. To the best of our 
knowledge, only three PRNGs have been proposed 
for EPC C1 Gen2 passive tags [7, 20, 22], among 
which two proposals use TRNGs as a component and 
the security properties of those two PRNGs rely on 
the security of TRNGs. 
   Considering the high power consumption, large 
area and low throughput of TRNGs, we propose a 
lightweight PRNG for low-cost EPC C1 Gen2 tags in 
this paper. The basic idea of our design is to replace 
the TRNG in [7, 20] by a lightweight pseudorandom 
sequence generator with good statistical properties. 
To this end, nonlinear feedback shift registers 
(NFLSRs) have been fully exploited in our design. 
The security properties of the proposed PRNG are 
analyzed in great detail by using cryptographic 
statistical tests specified by the EPC C1 Gen2 
standard as well as the NIST test suite. Various 
cryptanalysis techniques have been applied to 
demonstrate the attack resistant properties of the 
proposed PRNG. Furthermore, a hardware 
implementation on a Xilinx Spartan-3 FPGA device 
shows that the new PRNG can be implemented using 
46 slices. 

1.1. EPC C1 Gen2 Protocol 

   The EPC C1 Gen2 was approved as ISO 18000-6C 
standard in 2006 for global use. Figure 1 shows an 
overview of the tag identification protocol. In the 
EPC C1 Gen2 tag identification protocol, two main 
operations, namely inventory and access, are 
performed for managing the tag population. In the 
inventory operation (Steps 1-4 in Figure 1), after 
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receiving a request from the reader, a tag generates a 
16-bit random number, denoted by RN16, and 
temporarily stores the number in a slot counter. 
When the slot counter is zero, the tag backscatters 
RN16 to the reader. Thereafter, the reader copies 
RN16 to an acknowledgement packet to be sent to the 
tag. When the tag receives the acknowledgement 
packet, it first compares the random number in the 
acknowledgement packet with RN16. If these two 
numbers are the same, then the tag backscatters the 
acknowledgement packet. 
 

 
Figure 1. EPC C1 Gen 2 Tag Identification Protocol 

  In the access operation (Steps 5-7 in Figure 1), after 
receiving a request, denoted by ReqRN, from the 
reader, the tag compares the random number in the 
request ReqRN with the stored RN16. If these two 
random numbers match, then the tag generates 
another random number RN16', which is called 
handle and backscatters it to the reader. Then the 
reader issues the commands such as Read, Write, and 
BlockWrite. Steps 8-10 in Figure 1 demonstrate a 
further access operation. Note that for each access 
operation the tag generates a new random number.  
 
2. Related Work 
 
  In this section, we give a brief overview of three 
previous PRNG proposals for EPC C1 Gen-2 passive 
RFID tags. 
 
2.1. Che et al.’s PRNG 
 
  Che et al. [7] designed a PRNG based on a 
combination of an oscillator-based TRNG and a 
linear feedback shift register (LFSR) with 16 stages. 
In their design, the TRNG is implemented using an 
analog circuit and exploits thermal noise of the 
circuit. To introduce randomness, one truly random 
bit from the TRNG is XORed with each bit of a 16-
bit sequence generated from the LFSR. In 16 clock 
cycles, a 16-bit random number is generated by the 
PRNG. Due to the linear structure, Che et al.'s 

scheme has been attacked by Melia-Segui et al. in 
[20] with a high success probability  𝑛+1

8𝑛
, where n is 

the length of the LFSR. 
 
2.2. Melia-Segui et al.’s PRNG 
 
  To avoid such an attack on Che et al.'s PRNG, 
Melia-Segui et al. [20] proposed a similar design by 
employing multiple primitive polynomials instead of 
one in the LFSR. The design consists of a true 
random source, a module with eight primitive 
polynomials, and a decoding circuit taking inputs 
from the true random source, where the decoding 
circuit is designed in such a way that the same 
primitive polynomial is not chosen consecutively. At 
each clock cycle, one primitive polynomial is chosen 
according to the decoding logic and true random bits 
for producing a pseudorandom bit. Thus, the PRNG 
produces a 16-bit random number in 16 clock cycles 
and the security of the PRNG relies on the TRNG. 
 
2.3. Peris-Lopez et al.’s  PRNG 
 
  In [22], Peris-Lopez et al. proposed a PRNG named 
LAMED for RFID tags, which is in compliance with 
the EPC C1 Gen2 standard and can provide 32-bit as 
well as 16-bit random numbers. The basic operations 
for updating the internal state of LAMED consist of 
bitwise XOR operations, modular algebra, and bit 
rotations. The internal state of the LAMED is of 64-
bit, including a 32-bit key and a 32-bit initial vector. 
The key length can be further increased by replacing 
the IV bits with the key bits. Note that the LAMED 
always outputs a 32-bit random number and a 16-bit 
random number is obtained by dividing 32-bit 
number into two equal halves and XORing them 
together. 
 
3. Preliminaries 
 
  In this section, we define some terms and notations 
that will be used to describe the proposed 
pseudorandom number generator.  
 
Notations: 

- 𝐹2 = 𝐺𝐹(2) = {0,1}: the Galois field with 
two elements. 

- 𝑝(𝑥) =  1 + 𝑥 + 𝑥3 + 𝑥4 + 𝑥5: a primitive 
polynomial over 𝐹2.  

- 𝐹25 = 𝐺𝐹(25): the extension field of 𝐹2 
with 25 elements. Let α be a primitive 
element of 𝐹25 such that 𝑝(𝛼) = 0. 

- 𝑇𝑟(𝑥) =  𝑥 + 𝑥2 + 𝑥22 + 𝑥23 + 𝑥24: the 
trace function from 𝐹25  to 𝐹2. 

Definition 1. The linear span (LS) or linear 
complexity of a binary sequence is defined as the 
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length of the smallest linear feedback shift register 
which generates the entire binary sequence. 
 
Definition 2. A binary sequence with period 2𝑛 − 1 
is called a span n or modified de Bruijn sequence if 
each non-zero n-tuple occurs exactly once in a 
period. 
 
Definition 3. Two periodic sequences of the same 
period are called shift distinct of each other if one 
sequence cannot be obtained from the shift 
equivalent of the other sequence.  
 
Definition 4. An imbalance range of a binary 
sequence is the absolute difference between the 
number of zeros and ones in a period.  
 
The WG Transformation: Let m mod 3 ≠ 0, 3k 
mod m = 1 and  ℎ(𝑥) =  𝑥 + 𝑥𝑞1 + 𝑥𝑞2 + 𝑥𝑞3 +
 𝑥𝑞4 where 𝑞𝑖 's are given by 𝑞1 =  2𝑘 + 1, 𝑞2 =
 22k + 2𝑘 + 1, 𝑞3 =  22k − 2𝑘 + 1, 𝑞4 =  22k +
2𝑘 − 1. Then the function WGP(), mapping from 
𝐹2𝑚 to 𝐹2𝑚, given by  

WGP(𝑥) = ℎ(𝑥 + 1) + 1  
is called the WG permutation and the function 𝑓 
from 𝐹2𝑚 to 𝐹2 given by  
          𝑓(𝑥𝑑) =  𝑇𝑟� WGP(𝑥𝑑)�, 𝑥 ∈ 𝐹2𝑚   
is known as the WG transformation with decimation 
𝑑, where 𝑑 is co-prime to 2𝑚 − 1 [12]. The WG 
transformation has excellent cryptographic properties 
such as high nonlinearity, algebraic degree and at 
least 1-order resiliency for a proper selection of 
basis. Moreover, a sequence generated by the WG 
transformation has high linear complexity. 

 
4. Description of the Proposed PRNG 
 
  The proposed PRNG is composed of two main 
building blocks. The first one consists of two 
NLFSRs of length 17 and 18 over 𝐹2, each one 
generating a span n sequence or modified de Bruijn 
sequence with optimal linear complexity, whereas 
the second one includes an NLFSR over 𝐹25 and 
each NLFSR uses one or two WG transformation 
modules. In our design, the binary sequence 
generated by the first building block is converted to a 
sequence over 𝐹25 and this sequence is used in the 
recurrence relation in the second building block. The 
final output sequence is filtered by the WG 
transformation and n-bit random numbers are 
generated by taking disjoint n-bit sequences from the 
final output sequence. A high-level architecture of 
the proposed PRNG is illustrated in Figure 2. 

 
Figure 2. A Diagram of the PRNG for EPC C1 Gen2 
Tags 

4.1. Building Block I: An Alternative to 
TRNG 
 
  The first building block contains two NLFSRs 
whose lengths are chosen to be co-prime in order to 
achieve the maximum period. The reason that two 
shorter NLFSRs are used instead of a long one is due 
to the impossibility of generating shift distinct 
sequences from a long NLFSR for different initial 
states. In other words, by XORing the output 
sequences from two NLFSRs we can obtain shift 
distinct sequences for different initial states. In our 
design, the WG transformation with decimation 
𝑑 = 3 over 𝐹25, denoted by WG5 in Figure 2, is used 
as a nonlinear feedback function to generate span n 
sequences. For 𝑚 = 5, the WG permutation is 
defined as 
    𝑊𝐺𝑃5(𝑥) =  𝑥 + (𝑥 + 1)5 + (𝑥 + 1)13    +
                              (𝑥 + 1)19 + (𝑥 + 1)21, 𝑥 ∈ 𝐹25 
and the WG transformation over 𝐹25 is given by 

𝑓(𝑥) =  𝑇𝑟� 𝑊𝐺𝑃5(𝑥)� = 𝑇𝑟(𝑥19), 𝑥 ∈ 𝐹25 , 
which has the maximum nonlinearity 12, the 
algebraic degree 3 and the maximum algebraic 
immunity 3. The n-stage nonlinear recurrence 
relation is defined as 
𝑏𝑛+𝑘 =  𝑏𝑘 ⊕ 𝑓(𝑥𝑑), 𝑥 = �𝑏𝑟1+𝑘 , … , 𝑏𝑟5+𝑘�  ∈  𝐹25 

for all 𝑘 ≥ 0, and 0 <  𝑟1 < ⋯  <  𝑟5 < 𝑛 are tap 
positions of two NLFSRs, where ⊕ denotes addition 
over 𝐹2. Using the parameters and recurrence 
relations in Table 1, we can generate two span n 
sequences 𝒃 = {𝑏𝑖}𝑖≥0, and 𝒄 = {𝑐𝑖}𝑖≥0 with 
NLFSR1 and NLFSR2, respectively. The output 
sequence of the first building block is denoted 
by 𝒔 = {𝑠𝑖} = {𝑏𝑖 ⊕ 𝑐𝑖}, 𝑖 ≥ 0 which is almost 
balanced and has the following statistical properties:  

a) The period is (218 − 1)(217 − 1) ≈
235; 
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b)  The imbalance range is 4; and  
c)  The linear span is (218 + 217 − 4)  ≈

 218.58. 
For different initial states of the NLFSRs, the 
number of shift distinct sequences s is equal 
to (218 − 1)(217 − 1) − 2. 
 
Table 1. Parameters and Statistical Properties of Two 
NLFSRs 

NLFSR Len
gth 

Tap position 
(𝑟1 … 𝑟5)  

Period Linear 
Span 

NLFSR1 18  4, 7, 8, 10, 15 218 − 1 218 − 2 

NLFSR2 17  4, 7, 8, 9, 12 217 − 1 217 − 2 

 
  We now generate a new sequence 𝒕 = {𝑡𝑘}𝑖≥0 over 
𝐹25 from s as follows 
           𝑡𝑘 = (𝑠5𝑘, 𝑠5𝑘+1, … , 𝑠5𝑘+4)  ∈  𝐹25 ,𝑘 ≥ 0.  
Note that the sequence t is a shift distinct sequence 
for different initial states of the NLFSRs and the 
linear complexity of sequence t is bounded below by 
 218.58 as 𝐹25 and 𝐹2 have the same characteristic 
[17]. The sequence t is used in the second building 
block for introducing nonlinearity in the recurrence 
relation in each 5 clock cycles (see Section 5 for 
details). This building block is used as an alternative 
to the TRNG in [7, 20]. 
 
4.2. Building Block II: Pseudorandom 
Number Generator 
 
  The second building block consists of an NLFSR 
and two WG transformation modules given by 𝑓(𝑥) 
and 𝑓(𝑥3), respectively. Letting the length of 
NLFSR3 be 𝑙 = 6 and the primitive polynomial 
be 𝑔(𝑥) =  𝑥6 +  𝑥 +  𝛾 , where 𝛾 =  𝛼15  ∈ 𝐹25 , the 
recurrence relation is defined as 
𝑎𝑘+6 =  𝛾𝑎𝑘 + 𝑎𝑘+1 + 𝑤𝑘 + 𝑡𝑘,𝑎𝑖 ∈ 𝐹25 ,𝑘 ≥ 0   (1) 
where 𝑤𝑘 = (0, 0, 0, 0, 𝑓(𝑎𝑘+5)) is the nonlinear 
feedback with the least signification bit generated by 
the WG transformation 𝑓(𝑥) and 𝒕 = {𝑡𝑘}𝑖≥0 is the 
sequence over 𝐹25  that is defined in the previous 
subsection. While the WG transformation 𝑓(𝑥) (i.e., 
VWG5 in Figure 1) is only used as a nonlinear 
feedback function in NLFSR3, the WG 
transformation 𝑓(𝑥3) (i.e., WG5 in Figure 1) is 
employed to generate nonlinear feedback for 
NLFSR1 and NLFSR2 as well as to filter the output 
sequences. In the above recurrence relation (1), the 
nonlinearity is introduced by 𝑡𝑘 and 𝑤𝑘 and those 
feedback will affect other bit positions after 
multiplying by 𝛾. Note that the period of the 
sequence 𝒂 = {𝑎𝑘}𝑖≥0 is a multiple of the period of t. 
Moreover, the final output sequence 𝒐 = {𝑜𝑘} of the 
second building block is defined by 𝑜𝑘 = 𝑓(𝑎𝑘+53 ) 
for 𝑘 ≥ 0. The period of o is a multiple of 2

35

5
=

 232.67, and the linear complexity of o is lower 
bounded by the linear complexity of t. 
 
4.3. System Initialization 
 
  The proposed PRNG has an internal state 65 bits, 
including a 45-bit secret seed as well as a 20-bit 
initial vector (IV). While the secret seed and the IV 
are preloaded into RFID tags at the very beginning, 
the 20-bit IV is also updated at the end of each 
protocol session. Before generating random numbers, 
a 36 rounds of initialization phase is applied to mix 
the key and IV properly. In our design, the secret 
seed and IV are preloaded as follows: the first 
consecutive 12, 11 and 22 positions of NLFSR1, 
NLFSR2 and NLFSR3 are respectively reserved for 
key bits, whereas the remaining positions in each 
NLFSR are for the IV. The initialization process is 
illustrated in Figure 3. During the initialization phase 
the internal states of the three NLFSRs are updated 
as follows: 
𝑏18+𝑘 =  𝑏𝑘 ⊕ 𝑓(𝑥3) ⊕𝑜𝑘,  
𝑥 = (𝑏𝑘+4, 𝑏𝑘+7,𝑏𝑘+8,𝑏𝑘+10,𝑏𝑘+15),𝑘 ≥ 0, 𝑜0 = 0, 
𝑐17+𝑘 =  𝑐𝑘 ⊕ 𝑓(𝑦3) ⊕𝑜𝑘,  
𝑦 = (𝑐𝑘+4, 𝑐𝑘+7, 𝑐𝑘+8, 𝑐𝑘+9, 𝑐𝑘+12),𝑘 ≥ 0, 𝑜0 = 0, 
𝑠𝑘+4 =  𝑏𝑘 ⊕  𝑐𝑘, 𝑘 ≥ 0, 𝑠𝑗 = 0, 𝑗 = 0, 1, 2, 3,  
 𝑡𝑘 = (𝑠𝑘, 𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3 𝑠𝑘+4)  ∈  𝐹25 ,𝑘 ≥ 0, 
𝑎𝑘+6 =  𝛾𝑎𝑘 + 𝑎𝑘+1 + 𝑤𝑘 + 𝑡𝑘,𝑎𝑖  ∈  𝐹25 , 𝑘 ≥ 0, 
𝑤𝑘 = �0, 0, 0, 0, 𝑓(𝑎𝑘+5)�,𝑘 ≥ 0, 
𝑜𝑘+1 = 𝑓(𝑎𝑘+53 ),𝑘 ≥ 0,  
where 𝑏18+𝑘, 𝑐17+𝑘 and 𝑎𝑘+6 are the updated values 
of NLFSR1, NLFSR2 and NLFSR3, respectively, 
and 𝑤𝑘 is generated by the WG transformation 𝑓(𝑥). 
Sequence {𝑠𝑘} is the XOR sequence of two output 
bits from NLFSR1 and NLFSR2 and five 
consecutive 𝑠𝑘’s are collected to form a 5-bit vector 
𝑡𝑘. The output 𝑜𝑘 of NLFSR3 is used as a nonlinear 
feedback to affect the internal states of both 
NLFSR1 and NLFSR2. 
 

          
Figure 3. Key Initialization Phase 
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Remark 1. A 20-bit IV can be generated from the 
initial SRAM state of tags when tags are powered up 
(see [15]). The entropy of IV can also be increased 
by employing the von Neumann technique, which 
can be efficiently implemented in hardware [24]. 
However, the implementation of these components 
needs additional hardware support. 
 
5. Security Analysis of the PRNG 
 
  The security analysis of the proposed PRNG is 
conducted in two steps. In the first step, we 
performed all cryptographic statistical tests that are 
specified in the EPC C1 Gen2 standard [10] and the 
NIST standard [23] on several sets of pseudorandom 
sequences generated by the proposed PRNG with 
different initial states. In the second step, we 
investigate the attack resistant properties of the new 
PRNG by launching the algebraic attacks, cube 
attacks, and time-memory-data tradeoff attacks. 
 
5.1. Randomness Analysis of the PRNG 
 
  According to the EPC C1 Gen2 standard, a true 
random or pseudorandom number generator must 
satisfy the following three statistical properties: 

- Probability of a single sequence: The 
probability that any 16-bit random sequence 
(RN16) drawn from the PRNG has value j, 
shall be bounded by 
    0.8

216
 ≤ Pr(𝑅𝑁16 = 𝑗)  ≤  1.25

216
  for any j. 

- Probability of simultaneously identical 
sequences: For a tag population up to 
10,000, the probability that any of two or 
more tags simultaneously generate the same 
sequence of bits shall be less than 0.1%, 
regardless of when the tags are energized. 

- Probability of predicting a sequence: A 
sequence drawn from the PRNG 10ms after 
the end of transmission shall not be 
predictable with a probability greater than 
0.025% if the outcomes of prior draws 
from the PRNG, performed under identical 
conditions, are known. 

  We implemented our PRNG in software for 
checking whether the proposed PRNG meets the 
above three criteria. To verify the first criterion, we 
generated 18 different test sequences for different 
initial states of the NLFSRs and calculated the 
probability of occurrence of 16-bit numbers. Our 
experimental results show that the probability of any 
16-bit number j, i.e., Pr (𝑅𝑁16 =  𝑗) lies between 
0.9409
216

  and 1.0693
216

, which are better bounds than those 
obtained in [20]. The upper and lower bounds of 
probability values for different tests are given in 2nd  
and 3rd columns  in Table 2. With respect to the 
second criterion, our PRNG can generate up to 
245 − 1 shift distinct sequences for different keys to 

each tag, since the sequence t generated in Section 
4.1 is shift distinct. Thus the probability that any two 
tags will generate the same sequence with period at 
least 232.67 is approximately 2−45 that is much less 
than 0.1%. For the third criterion, given a 16-bit 
random number, an attacker can recover the internal 
state of NLFSR3 with probability 2−24 after getting 
80 bits of the sequence s. To obtain the next 16-bit 
random number from the given one, the adversary 
needs to know the next consecutive 80 bits of the 
sequence s and the internal state of NLFSR3. The 80 
bits can be obtained either by guessing or obtaining 
about 2

18.58

5
=  216.26 consecutive random numbers. 

Due to the high linear span of the sequence s, it is 
impossible to generate the next consecutive 80 bits 
from previous known 80 bits in practice. 
Furthermore, it is also difficult for an adversary to 
intercept 216.26 consecutive random numbers in one 
protocol session because the communication session 
in RFID systems is usually quite short and the IV is 
different. Moreover, the secret seed can also be 
updated for different sessions. Hence, the attacker 
can guess the next 16-bit random number with the 
better probability 2−16, which is much less than 
0.025% as specified in the EPC C1 Gen2 standard. 
 
  To measure the linear dependency between an n-bit 
output and the previous n-bit output, we performed a 
serial correlation test [18] on the sequences 
generated by the PRNG. We generated 18 distinct 
sequences for different initial values of the NLFSRs, 
each one is of size 226 bytes and calculated the serial 
correlation coefficient for 1-bit, 1-byte and 2-byte 
lag. Our experimental results demonstrate that the 
serial correlation coefficients are close to zero, which 
indicates the good randomness of the generated 
sequences. The serial correlation coefficients for 
different sequences are given in 4th, 5th and 6th 
columns of Table 2. 
 
Table 2. The First and Third Requirements 

Seq. Upper Lower  1-bit 1-byte 2-byte 
S1 1.0471 0.9497 0.000098 -0.000080 -0.000061 
S2 1.0476   0.9530 -

0.000012 
0.0000025 -0.000055 

S3 1.0444 0.9555 0.000094 -0.000064 -0.000006 
S4 1.0693 0.9517 -

0.000075 
0.000106 -0.000046 

S5 1.0468 0.9537 0.000057 0.000041 -0.000041 
S6 1.0440 0.9545 -

0.000012 
0.000012 0.000078 

S7 1.0457 0.9550 -
0.000063 

-0.000028 0.000080 

S8 1.0454 0.9560 0.000025 0.000085 0.000032 
S9 1.0533 0.9550 -

0.000002 
-0.000005 -0.000042 

S10 1.0483 0.9544 0.000082 -0.000023 0.000023 
S11 1.0541 0.9532 0.000045 -0.000033 0.000046 
S12 1.0456 0.9514 0.000030 0.000026 0.0000012 
S13 1.0487 0.9493 -

0.000006 
0.000101 0.000071 
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S14 1.0494 0.9523 -
0.000053 

-0.000047 0.000036 

S15 1.0506 0.9550 -
0.000075 

-0.000091 -0.000086 

S16 1.0302 0.9850 0.000015 0.000004 -0.000106 
S17 1.0499 0.9505 -

0.000091 
0.000025 -0.000067 

S18 1.0533 0.9409 0.000012 -0.000028 -0.000043 
 
  Different from the statistical tests in the EPC C1 
Gen2 standard, the NIST test suite contains 15 
demanding statistical tests for characterizing the 
randomness of a binary sequence. According to the 
NIST specification [23], a PRNG passes the test suite 
successfully if it passes all the tests simultaneously 
with a proportion of  96%. In our experiment, 10 test 
sequence (TS) sets are generated, each of which has 
100 different sequences with different initial values 
and each sequence has a length of 225. We computed 
the proportion values for each TS set and listed the 
test results for 5 TS sets in Table 3. Non-overlapping 
template matching test results are not given in Table 
3 because of 148 entries. However, the proposed 
PRNG has passed the test successfully. It is not 
difficult to find out that each TS set can pass the 
NIST test suite successfully. 
 

Table 3. NIST Test Suite Results of our Proposal 

 

5.2. Cryptanalysis of the PRNG  

 

 
 In this subsection, the attack resistant properties of 
the PRNG are investigated by considering the 
algebraic attacks, cube attacks, and time-memory-
data tradeoff attacks in detail. Since our PRNG uses 
nonlinear feedback shift registers over different 
fields, we also explain below why the correlation 
attacks [21], Discrete Fourier Transformation (DFT) 
attacks [13], and differential attacks [25] are not 
applicable. 
 
5.2.1.  Algebraic Attack 
 
  Algebraic attack [8] is a powerful attack against 
stream ciphers. In our PRNG design, nonlinear 
feedback functions are used to update the internal 
states of different NLFSRs and the output bits are 
filtered by the WG transformation. Noting that the 
length of the internal state of the PRNG is 65-bit and 
the length of the secret key is 45-bit, one can reduce 
the PRNG to a system of linear equations with about 
245 unknown variables after applying the 
initialization round, which can be solved by 
approximately 7

64
(245)𝑙𝑜𝑔2(7) operations. As a result, 

the algebraic attack is not better than the exhaustive 
search in this case. 
 
 

 

 

Tests TS1 
Proportion 

TS2 
Proportion 

TS3 
Proportion 

TS4 
Proportion 

TS5 
Proportion 

Frequency  0.97 1.00 0.99 0.98 1.00 
Block-frequency 0.99 1.00 0.98 0.99 1.00 
Cumulative-sum 0.97, 1.00 1.00, 1.00 0.97, 0.97 0.99, 0.99 0.99, 1.00 
Runs 1.00 0.98 1.00 0.99 1.00 
Longest-run 0.98 1.00 0.98 0.99 0.98 

Rank 0.99 1.00 0.99 1.00 0.99 
DFT 1.00 1.00 0.98 1.00 0.99 
Overlapping-templates 0.96 0.97 0.97 0.97 0.99 

Universal-statistics 0.99 0.98 1.00 1.00 0.98 
Approximate entropy 0.99 1.00 0.98 0.97 0.99 
Serial 0.99, 0.98 0.98, 0.98 1.00, 1.00 1.00, 1.00 0.99, 1.00 

Linear-complexity 0.99 0.99 0.98 0.99 0.99 
Random-excursions 0.97, 0.90 0.98, 1.00 0.98, 1.00 1.00, 0.99 0.99, 0.97 
 0.97, 0.97 0.98, 0.97 1.00, 0.99 1.00, 0.98 0.98, 0.97 

 0.98, 1.00 0.97, 0.97 1.00, 0.99 0.98, 0.97 0.99, 1.00 
 0.97, 0.96 0.98, 0.97 0.98, 0.97 0.99, 0.98 1.00, 0.99 
Random-excur- variant 0.98,0.98, 0.98 1.00,1.00, 1.00 1.00,1.00, 1.00 0.99,0.98, 0.99 0.98,0.97, 0.99 

 0.98,0.98, 0.98 1.00,0.97, 1.00 1.00,1.00, 0.99 1.00,1.00, 1.00 1.00,1.00, 0.99 
 1.00,1.00, 0.99 1.00,0.98, 0.98 1.00,1.00, 1.00 1.00,1.00, 1.00 0.99,1.00, 0.99 
 1.00,1.00, 1.00 0.98,0.98, 0.98 1.00,1.00, 1.00 0.99,1.00, 0.99 0.99,0.99, 1.00 

 0.98,0.98, 0.98 0.98,0.96, 0.96 1.00,1.00, 1.00 0.97,0.98, 1.00 1.00,0.98, 1.00 
 1.00,1.00, 1.00 0.98,0.98, 0.98 1.00,0.99, 0.99 0.97,0.96, 0.96 1.00,0.99, 0.98 

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 87



5.2.2. Cube Attack  
   Cube attack [9] is a generic key-recovery attack 
that can be applied to any cryptosystem, provided 
that the attacker can obtain a bit of information that 
can be represented by a low-degree decomposition 
multivariate polynomial in Algebraic Normal Form 
of the secret and public variables of the target 
cryptosystem. According to the cube attack, our 
PRNG can be regarded as a system of multivariate 
polynomials 𝑝(𝑘1, … , 𝑘45,𝑣1, … , 𝑣20) with public IV 
variables 𝑣1, 𝑣2 … , 𝑣20 and secret key 
variables 𝑘1,𝑘2, … , 𝑘45. The polynomial 
𝑝(𝑘1, … , 𝑘45,𝑣1, … , 𝑣20) =
 𝑡𝐼.𝑝𝑆(𝐼) + 𝑞(𝑘1, … , 𝑘45,𝑣1, … , 𝑣20) is called a master 
polynomial, where 𝑡𝐼 = 𝑣𝑖1𝑣𝑖2 … 𝑣𝑖𝑘 is a monomial 
with {𝑖1, 𝑖2, … , 𝑖𝑘}  ⊆ {1, 2, … , 20} and  𝑝𝑆(𝐼) is called 
a superpoly of  𝑡𝐼 in p. The term 𝑡𝐼 is called a 
maxterm if 𝑑𝑒𝑔�𝑝𝑆(𝐼)� =  1. We implemented the 
cube attack against our PRNG in CUDA and 
exploited the power of a GPU (i.e, a Tesla C2070 
from NVIDIA) for accelerating the computation 
significantly. We took the first output bit after the 
36-round initialization phase in order to find the 
maxterms in the master polynomial and performed 
an exhaustive search over all possible cube 
dimensions ranging from 1 to 20. However, our 
experiment did not find any linear and quadratic 
superpoly equations for different cube dimensions. 
 
5.2.3. Time-Memory-Data Tradeoff Attack 
 
  Time-memory-data tradeoff attack is a generic 
cryptanalytic attack which can be applied to any 
cipher. In a stream cipher, the complexity of a time-
memory-data tradeoff attack depends on the length 
of the internal state, which is given by 𝑂(2

𝑛
2), where 

n is the length of the internal state [4]. We note that a 
stream cipher with low sampling resistance is 
vulnerable to a more flexible time-memory-data 
tradeoff attack. In our PRNG, the WG transformation 
is the filtering function as well as the internal state 
update function and the number of terms in the 
algebraic normal form representation of the WG 
transformation is 15, among which only two terms 
are linear and the remaining terms are either 
quadratic or cubic. Only by fixing four input 
variables in the WG transformation, one can obtain a 
linear function in one variable. Thus, the sampling 
resistance of the proposed PRNG is high. Since the 
length of the internal state is 65-bit in our PRNG, the 
expected complexity of the time-memory-data 
tradeoffs attack is 𝑂(2𝑙), where l equals 32.5. 
 
5.2.4.  Other Attacks 
 
  In the fast correlation attacks [21], the internal state 
of an LFSR based stream cipher can be recovered by 
first determining a system of linear equations 
according to a statistical model and then solving the 

system of linear equations. In our PRNG, the internal 
state is updated in a nonlinear way. Thus it is hard 
for an attacker to decide such a system of (non-) 
linear equations according to some statistical models. 
 
   For an LFSR based stream cipher, the DFT attacks 
[13] can be applied when the exact linear complexity 
of the output sequence and enough consecutive 
output bits are known. In our PRNG, the exact linear 
complexity and period of the output sequence are not 
known for an initial state. Therefore, the DFT attacks 
cannot be applied to our PRNG. Moreover, in the 
EPC C1 Gen2 standard protocol, it is hard for an 
attacker to obtain enough consecutive bits. 
 
  A chosen IV attack on the original version of WG 
cipher was presented in [25], where one can 
distinguish several bits of the output sequence by 
building a distinguisher based on differential 
cryptanalysis. In our PRNG, two nonlinear terms 
(i.e., an output from the WG transformation as well 
as a 5-bit tuple generated by the first building block) 
are added to the recurrence relation. Thus the 
differentials after 36 rounds of the initialization 
phase will contain most internal state bits. As a 
result, it would be hard for an attacker to distinguish 
output bits generated by the proposed PRNG. 
 
5.3. Comparisons with Sponge-based 
PRNGs 
 
  A sponge-based PRNG is constructed using a 
sponge function [3], which is composed of two 
phases: an absorbing phase and a squeezing phase. 
While truly random seeds are fed into the internal 
state of the sponge function in the absorbing phase, 
the squeezing phase outputs pseudorandom numbers 
[3]. Any sponge-based hash function such as U-
QUARK [1], DM-PRESENT [6], PHOTON [14], 
and SPONGENT [5] can be used to construct a 
sponge-based PRNG. Since a sponge-based PRNG 
requires a multiple seeding mechanism, one needs 
additional random sources to provide multiple truly 
random seeds to the PRNG while generating 
pseudorandom numbers. Note that the multiple 
seeding mechanism provides the forward secrecy for 
the sponge-based PRNGs, which can also be 
achieved by our PRNG provided that additional 
random sources are available1

1 Assume that the length of a seed K is a multiple of 
the length of the secret key 
𝐾 =  𝑘1�|𝑘2|�… ||𝑘𝑟, 𝑟 ≥ 1. If a multiple seeding 
mechanism is applied to our PRNG, the seed is 
updated by repeating the following step r times: 
𝑘𝑖 (𝑖 = 1, 2, … , 𝑟) is XORed with the values in the 
key bit positions of the current internal state, 
followed by an 18-round of the initialization phase. 

. Moreover, our PRNG 

International Journal of RFID Security and Cryptography (IJRFIDSC), Volume 2, Issue 2, December 2013

Copyright © 2013, Infonomics Society 88



design has desired randomness properties like period 
and linear span (see Table 4).  
 
6. Hardware Implementation 
 
In this section we report efficient FPGA 
implementation of the proposed PRNG core on the 
low-cost Xilinx FPGA series Spartan-3 and 
compare our results with other reported lightweight 
PRNG implementations. 
 
6.1. Target Platform and Design Tools 
 
   FPGAs are composed of configurable logic blocks 
(CLB) and a programmable interconnection network. 
We implement the proposed PRNG core in VHDL 
for the low-cost Spartan-3XC3S50 (Package PQ208 
with speed grade -5) FPGA device from Xilinx [26]. 
Considering the availability of SRL16 in Spartan-3 
generation of FPGAs, we have coded NLFSR1, 
NLFSR2, and NLFSR3 properly to guide the 
synthesis tool to infer SRL16 shift register cells, 
which enables us to reduce the area of the resulting 
implementation significantly. We use the integrated 
FPGA development environment Aldec Active-HDL 
9.1 for writing, debugging and simulating VHDL 
codes. Furthermore, Synopsys Synplify Premier with 
Design Planner E-201103-SP2 and Xilinx ISE 
Design Suite v13.2 are employed for the design 
synthesis and implementation, respectively. 
 
  The PRNG core works as follows. Under the 
control of clock enable pins CE1, CE2, and CE3, the 
45-bit secret seed and 20-bit IV will be first loaded 

into NLFSR1, NLFSR2, and NLFSR3 within 18 
clock cycles through pins DIN1, DIN2, and DIN3, 
respectively. After loading the required key and IV, 
the initialization phase will be performed in the next 
36 clock cycles without any output (i.e., CE5 is 
disabled in this phase). The running phase will start 
from the 55-th clock cycle and the PRNG core will 
output one bit every five clock cycles under the 
control of clock enable pins CE3 and CE5.  
  
  The finite state machine (FSM) has two 1-bit input 
signals CLK and RST and seven 1-bit output control 
signals CE1-- CE5, Init, and Load. In our design, a 
binary counter is used to keep track of the number of 
clock cycles elapsed. The FSM starts by pulling up 
the reset signal RST to ‘1’, which resets the counter 
to be 0. At this time instance, the FSM sets two 
control signals Init = ‘0’ and Load = ‘1’ and starts 
loading key and IV. When the counter reaches a 
values of 17, the FSM goes into the initialization 
phase and two control signals become Init = ‘1’ and 
Load = ‘0’, respectively. During the initialization 
phase, the counter continues increasing by one at 
every clock cycle until it hits a value of 53. The FSM 
then transfers to the running phase. During the 
running phase, both control signals Init and Load are 
set to be ‘0’ and a 16-bit random number will be 
generated every 16 clock cycles. 
 
6.2. Hardware Architecture 
 
  A top-level description as well as the data path of 
the proposed PRNG core is illustrated in Figure 3.

 
 Figure 3. The Data Path of the Lightweight PRNG Core 
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6.3. Implementation Results and 
Comparisons 

 

  The hardware implementation shows that the 
PRNG core totally occupies 46 slices (12 and 34 
slices for building blocks I and II, respectively) on 
the target FPGA device and achieves a throughout of 
45 Mbps. Table 4 presents a comparison with other 
PRNGs in terms of hardware implementation and 
achieved randomness properties. One can notice that 
our PRNG has a lower hardware complexity than 
that in [22]. When compared to the PRNG proposed 
in [20] our design costs a similar number of logic 
gates with the usage of two NLFSRs replacing the 
TRNG in [20]. However, if we only compare the 
hardware implementation cost for the pseudorandom 
number generator module (i.e., the building block II 
in our design) in both proposals, our design only 
needs a half number of logic gates as that in [20]. 
Although the hardware complexity of our PRNG is 
slightly larger than that of SPONGENT-80 [5], our 
design can provide desired randomness properties 
such as period and linear complexity that cannot be 
guaranteed by SPONGENT-80. 

 
Table 4. A Comparison with Other PRNGs 

Functions State 
Size Area/GE Devices Randomness 

Period    LS 

Our PRNG 65 

46 
Slices/ 
760 GE 

(est.) 

XC3S50-
PQ208 232.67   218.58 

LAMED [22] 64 1585 
GE -   -           - 

Melia-Segui 
et al. [20] 16 761 GE -   -           - 

U-QUARK 
[1] 136 1379 

GE 
0.18μm 
CMOS   -           - 

DM-
PRESENT -
80 [6] 

144 1600 
GE 

0.18μm 
CMOS   -           - 

PHOTON-
80/20/16 [14] 100 865 GE 0.18μm 

CMOS   -           - 

SPONGENT-
80 [5] 88 738 GE 0.13μm 

CMOS   -           - 

 

  In terms of the time delay for generating the first 
16-bit pseudorandom number, our design totally 
requires 134 clock cycles, including 18 clock cycles 
for loading key and IV, 36 clock cycles for the 
initialization, and 80 clock cycles for generating the 
first 16-bit random number. After that, each 16-bit 
random number can be obtained every 80 clock 
cycles. Assuming that the EPC tags run at the clock 
frequency of 100 KHz and two 16-bit random 
numbers are needed for the tag identification 
protocol according to the EPC C1 Gen2 standard, 

one can identify about 510 tags in one second by 
using the proposed lightweight PRNG. 
 
Remark 2. In the proposed PRNG, we can update 
the 45-bit key at the end of each session by 
generating 45 extra bits in 225 clock cycles and these 
45 bits will be loaded at proper aforementioned key 
positions. This key updating procedure can be used 
to provide better security. In this way it is possible to 
generate at least 216.26 × 220 consecutive random 
numbers for one key and for different IVs. 
 
7. Conclusions 
 
  In this paper, we propose a lightweight 
pseudorandom number generator that is in 
compliance to the EPC Class-1 Generation-2 
standard and has guaranteed randomness properties 
like period and linear span. Considering the high 
power-consumption, large area and low throughput 
of TRNGs, we replace the TRNG used in previous 
works by a PRNG with good statistical properties. In 
our design, the pseudorandom sequence is generated 
using a nonlinear feedback shift register. Moreover, 
the statistical tests specified by the EPC C1 Gen2 
and the NIST standards, algebraic attacks, cube 
attacks and time-memory-data tradeoff attacks are 
employed to characterize the security properties of 
the proposed PRNG and a comparison with the 
sponge-based PRNGs is conducted. In addition, an 
FPGA implementation shows that the proposed 
PRNG can be implemented using 46 slices and can 
generate a 16-bit random number every 80 clock 
cycles after an initialization process of 36 clock 
cycles. 
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