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Abstract—It is predicted that more than 20 billion IoT devices
will be deployed worldwide by 2020. These devices form the
critical infrastructure to support a variety of important applica-
tions such as smart city, smart grid, and industrial internet. To
guarantee these applications to work properly, it is imperative to
authenticate these devices and data generated from them. Though
digital signature can be applied for these purposes, the scale
of the overall system and the limited computation capability of
IoT devices pose two big challenges. In order to overcome these
obstacles, we propose DIoTA, a novel decentralized ledger based
authentication framework for IoT devices. DIoTA uses a two
layer decentralized ledger architecture together with lightweight
data authentication mechanism to facilitate IoT devices and data
management. We also analyze the performance and security of
DIoTA, and explicitly give the major parameters an administra-
tor can choose to achieve the desirable balance between different
metrics.

I. INTRODUCTION

Internet of things (IoT) devices are fundamental building
blocks in many applications of the fourth industrial revolution
such as self-driving vehicles, advanced manufacturing systems,
agriculture, and smart cities. The combination of AI and
IoT (AIoT) plays a more critical role since it is able to
provide improved human-machine interactions, enhanced data
management and analytics, and more efficient management of
IoT devices. The effectiveness of AIoT heavily depends on
the data collected by IoT devices. Thus, the security should be
essentially taken into consideration when building IoT systems.
If an adversary can alter the input data to the AI module,
he/she can influence the AI and lead to conclusions that may
cause serious consequences. Therefore, it is critical for the
system to guarantee the authenticity of the data collected by
IoT devices. In other words, the end user should be able to
verify that the data is generated by the expected IoT device
and not compromised.

A modern IoT device is usually equipped with a pub-
lic/private key pair and able to handle simple asymmetric
cryptography operations such as the digital signature gen-
eration/verification, which can be used for data authenticity
protection. Specifically, the IoT device can sign its generated
data using its private key and send the data together with
the signature to the data consumer (e.g., the model training
component). Then, the consumer can verify the received data
against the digital signature and corresponding public key.
However, this approach is far away from satisfaction to be
applied in IoT applications because of two reasons: (i) An
IoT system usually involves a large number of devices, and
it is challenging to manage all public key certificates in
an efficient manner. (ii) An IoT device usually has limited
computation capability and power supply. Therefore, it cannot
afford frequent computation intensive asymmetric cryptography
operations, especially when the devices relying on battery are
deployed in the field. The situation becomes even more complex
when IoT devices are owned and managed by multiple parties
and the system relies on all the devices to operate. In this

case, a signature based authenticity protection mechanism may
not work as the owner can remove/alter the data generated by
managed IoT devices without being detected by others.

The emerging decentralized ledger technology sheds light
and provides a new way to protect the authenticity of the
data collected by IoT devices in a collaborative environment.
Decentralized ledger was first developed to build cryptocurrency
schemes without relying on a trusted third party [1], and later
it finds many other applications. In a nutshell, a decentralized
ledger is a data structure maintained by multiple parties
through a consensus protocol, and each party keeps its local
copy of the ledger. It exhibits several enticing characteristics
towards the data authenticity protection for IoT devices, such
as immutability, high availability, and collaboration support
with multiple parties.

Nevertheless, it is non-trivial to utilize the decentralized
ledger for the authenticity protection due to the two reasons
discussed earlier. In order to close the gap, we propose
DIoTA, a decentralized ledger based framework for IoT
data authenticity protection, which overcomes the challenges
with two novel ideas: (i) Layered decentralized ledger ar-
chitecture. To handle a large number of IoT devices and
provide timely services, DIoTA adopts the divide-and-conquer
strategy and proposes an edge-global architecture to organize
multiple decentralized ledgers. In DIoTA, each edge ledger
only serves a subset of IoT devices and the global ledger
connects all edge ledgers to facilitate occasional cross-ledger
data exchange. To reduce the cost and latency of cross-
ledger information exchange/verification, DIoTA uses a novel
cryptography accumulator based approach that allows one
edge ledger to quickly verify whether a record on another
edge ledger is valid or not. (ii) Lightweight backward-forward
secure data authenticity protection scheme using decentralized
ledger. To reduce the computation burden and save energy
of IoT devices, DIoTA leverages the immutability feature of
decentralized ledger to provide a lightweight backward-forward
secure data authentication mechanism. Even if an adversary
gets a temporary secret key for data authentication, he/she
cannot tamper with previous or future data. The mechanism
also minimizes the asymmetric cryptography operations on
computation and power-constrained IoT devices.

We provide detailed performance and security analysis of
DIoTA. The relationship among different parameters is also
presented so that users can choose appropriate configurations
for their unique requirements of IoT systems. To demonstrate
the practicality, we also describe the implementation and utilize
the experimental data to show its performance.

II. SYSTEM OVERVIEW AND SECURITY ASSUMPTIONS

Tis section presents an overview of the DIoTA framework
and its design goals.

A. Decentralized Ledger in DIoTA
There are mainly two types of decentralized ledgers: public

ledger and permissioned ledger. A public ledger allows anyone
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to participate in its maintenance. A user selects his/her own
public/private key pair according to the system requirements
(e.g., type and length of the key pair) by him/herself, and uses
the private key to sign transactions and constructed blocks.
Other users can verify a submitted transaction/block using the
corresponding public key while they cannot learn the owner’s
information directly from the public key. A permissioned
decentralized ledger also utilizes public/private key pairs to
identify users in the system, but requires all public keys are
recognizable, meaning that one can check whether a specific
public key is part of the system and who is the owner of it.
This is usually achieved through a public key infrastructure
(PKI).

In DIoTA, we assume the ledgers are maintained by nodes
which are controlled by entities that are involved in the
system, such as owners of IoT devices which are responsible
for data collection, data analytic service providers, and end
users of the analytic results. Since these entities know each
other, we consider permissioned decentralized ledger in DIoTA.
In other words, nodes participating the decentralized ledger
maintenance can recognize each other’s messages by verifying
digital signatures with public key certificates.

Although ledgers in DIoTA are maintained by authorized
nodes, it does not mean that information managed by DIoTA
is only accessible by these nodes. Depending on the use case,
DIoTA may allow the public to read information stored in
the decentralized ledgers while preventing them from updating
them.

B. Overview of DIoTA
In DIoTA, there are three types of participants, and Fig. 1

shows an overview of the system.
IoT devices. Each IoT device is equipped with a unique
public/private key pair and the public key is certified by a
CA, and it uses this key pair to authenticate itself to other
participants in the system. For the security guarantee, a variety
of methods have been developed, from silicon level (e.g., anti-
tamper technology) to software level (e.g., trusted execution
environment) [2]. Since IoT devices are typically targeted
for specific functionalities, it is relatively uncomplicated to
apply these technologies than devices with complexities. DIoTA
is orthogonal to these methods as it aims at protecting the
authenticity of the generated data from IoT devices. Therefore,
we assume the IoT device is trusted in this work. That is, it
follows pre-defined protocols and is able to safely store and
use the secret information such as the private key.
Decentralized ledger nodes. These nodes work together to
maintain the ledgers used in DIoTA, which provide IoT data
authenticity protection and other related services. We do not
fully trust a single node as it can be compromised by an
adversary. However, it is very unlikely that an adversary
can take over the majority of these nodes at the same time,
and the underlying consensus mechanism guarantees that the
decentralized ledger as a whole is trusted and preserves all
desirable features including immutability and correctness of
smart contract execution.
Cloud and edge servers. Cloud and edge servers are powerful
devices in terms of computation capability and storage capacity.
They cooperate to store the data generated by connected IoT
devices and help the devices to communicate with each other.
Cloud and edge servers are not fully trusted. An adversary
may be able to alter IoT devices generated data. When such
an event occurs, the DIoTA helps the end users detect the
modification.

IoT Devices

Edge Servers

Cloud Servers

Edge Severs

IoT Devices

Global Ledger

Edge Ledger Edge Ledger

Fig. 1: Overview of DIoTA and its relationship with edge-
cloud infrastructure. DIoTA is composed of two types of
decentralized ledgers (edge ledger and global leger), which
work together to provide IoT data authenticity protection
service. Edge servers and cloud servers collaborate to provide
storage and communication services to IoT device.

Integrating cloud and edge computing technologies to serve
IoT systems has been studied extensively [3], [4]. This paper
focuses on the design of the decentralized ledger structure
and the interaction protocol between IoT devices and the
ledger. DIoTA can be easily integrated with existing IoT-edge-
cloud design. Notations used in the description of DIoTA are
summarized as follows: (i) D is the set of all IoT devices.
(ii) Di is the ith IoT devices subset and Di ⊂ D. dij is
the jth IoT device in Di. We also assume ∪i=1Di = D and
Di ∩ Dj = ∅, i 6= j. (iii) ELi represents both the ith edge
ledger and the set of nodes that maintain ELi. elij ∈ ELi is
a node of the edge ledger. (iv) GL represents both the global
ledger and the set of nodes maintain GL, gli ∈ GL is a node
of the global ledger.

C. Design Goal and Objectives of DIoTA
The goal of DIoTA is to protect the authenticity of data

collected by IoT devices. Considering the characteristics of
IoT system, the design goal is further divided into following
objectives:
• Performance. DIoTA should be able to support a large

number of IoT devices and reduce the computation burden
off from those devices.

• Security. When the underlying decentralized ledger is
secure (i.e., the decentralized ledger as a whole behaves
honestly and follows the pre-defined protocols), DIoTA
should be able to detect breakages when adversaries
manipulate the data from IoT devices and guarantee the
data authenticity.

• Management. DIoTA should allow IoT devices to join
and/or leave the system. It also should allow them to
move from one place to another without the protection
disruption.

III. DETAILED DESIGN OF THE DIOTA FRAMEWORK

This section details the DIoTA framework for the IoT data
authenticity protection.

A. Connection of Different Components
The set of IoT devices D are divided into groups Di, and

each group Di is served by an edge ledger ELi, which is
maintained by multiple nodes eij (edge servers). These edge
ledger nodes can be deployed on the edge and they are usually
close to the IoT devices they serve. There is also a global ledger
GL, which is maintained by a group of nodes that usually sit
in the cloud. Each edge ledger ELi is connected to the global
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ledger GL, but different edge ledgers are not directly connected
with other in order to reduce the system complexity.

Note that an edge ledger is a decentralized system and the
IoT device dij can connect to an arbitrary node eij of the
corresponding edge ledger ELi. To tolerate the failure of edge
ledger nodes, the IoT device dij locally keeps a list of nodes
of ELi. When dij tries to connect to ELi, it iterates through
the list of nodes until succeeded. If one or more nodes in
the current list are not accessible, dij updates its local list
by replacing them with new nodes with the help of the edge
ledger node that it has been successfully connected to.

An edge ledger and the global ledger can share some nodes
for connection (i.e., GL∩ELi 6= ∅). The implementation detail
is presented in Section V.

B. Certificate Management
Each IoT device dij ∈ Di has a certificate certij , which

is generated by a CA and registered with ELi. ELi embeds
certij in a transaction, and then includes it to a block of the
ledger maintained by nodes of ELi. Therefore, when the device
dij signs a message using its private key, nodes in ELi can
verify its validity with the corresponding public key certificate.
Considering the large number of IoT devices, ELi does not
actively share its managed certificates with other edge ledgers
and the global ledger.

Each edge/global ledger node also has its own certificate
to support the decentralized ledger operations. Unlike IoT
devices’ certificates, all ledger nodes’ certificates are stored in
each edge ledger and the global ledger, and all ledger nodes
can authenticate each other using digital signatures and stored
certificates. Compared with the number of IoT devices, the
total number of edge/global nodes is limited. Thus, keeping a
copy of their certificates in each ledger is not a big burden.

A certificate revocation is performed by generating a revoca-
tion transaction on the corresponding ledger(s). The revocation
of an IoT device’s certificate is managed by the edge, whereas
the revocation of a ledger node’s certificate is broadcasted
to all the ledgers in the system. When the cross-edge-ledger
verification is required, the protocol described in Section III-F
is utilized to enable efficient information verification between
different edge ledgers, which only requires exchanging of a
constant amount of data.

C. IoT Device Authentication
The device authentication is the prerequisite for the data

authenticity protection. An IoT device is authenticated using
digital signatures generated with its private key, and one can
verify it with its certificate. DIoTA provides several services
to facilitate the device authentication:
• Signature verification. An IoT device dij submits its digital

signature to the connected edge ledger ELi, and nodes in
ELi can verify the signature with the certificate stored on
the edge ledger.

• Certificate checking. In case the IoT device dij just moves
to a new edge ledger ELi′ , ELi′ obtains its certificate from
the original edge ledger ELi with the help of the global
ledger using the efficient information exchange protocol
given in Section III-F.

D. IoT Data Authentication
There are two major interaction models in IoT communica-

tion protocols: the request-reply model and publish-subscribe

model. For both cases, SSL can be utilized to protect the data
authenticity in transmission. However, the energy required to
maintain the SSL connection is not negligible for IoT devices.
Furthermore, SSL is not able to protect the authenticity of
data at the rest. Therefore, a customized IoT data authenticity
protection should be provided under the DIoTA framework.

Data authenticity protection schema. DIoTA uses data au-
thenticity protection schemas to manage information needed for
data authenticity protection and these schemas are maintained
by edge ledgers other than the IoT devices. Therefore, an
IoT device does not need to manage sessions by itself. A
schema consists of 6 fields: (i) Sender. Certificate of the
IoT device sending data. (ii) Data unit. The unit of data
transmission, which can be 1 KB, 1 MB, or other sizes based
on the preference of the IoT device. (iii) Data authentication
mechanism. The IoT device can select different ways to
authenticate generated data, such as HMAC and CMAC.
(iv) Key information. The key used in the selected data
authentication mechanism. (v) Key updating frequency. After
the authentication key is used for a certain number of data
units, the IoT device sending data will update the key and
everyone should stop using the old key for new data units’
authenticity. (vi) Lifespan of the schema. This field is an integer
that determines how many times the authentication key can be
updated. Each IoT device can select its own parameters for
the schema according to its special requirements.

The key information field is hidden from the public when
created, to prevent an adversary from generating valid MACs
for fake data, but the key needs to be disclosed later to allow
others to use it to verify the sender generated MACs.

As information stored in this field is intended to be disclosed
later, DIoTA uses a cryptographic commitment scheme instead
of encryption to temporarily hide the key. A cryptographic
commitment scheme has two basic features, hiding and binding.
The hiding feature prevents an adversary from learning the
committed value by observing the commitment, and the binding
feature guarantees that no one can modify the committed value
after the commitment is generated and published. In order to
reduce the computation cost of IoT devices, DIoTA uses the
HMAC based commitment scheme. To commit a value val, the
IoT device randomly selects a secret key hkey, and computes
the commitment as ci← HMAC(val, hkey). HMAC is built based
on a cryptographic hash function, and we use SHA256 in this
work and set the length of hkey as 256 bits. The key updating
frequency field determines how long an authentication key can
be used. It also affects the waiting time for one to verify the
authenticity of recently uploaded data, as it only obtains the
key after the key is updated to a new version.

The device dij submits its data authentication schema
together with a digital signature to the edge ledger ELi for
verification and storage. The end user of the data can obtain the
schema information from ELi. If the end user is not connected
to ELi directly, it can ask its connected edge ledger to obtain the
schema information using the efficient information exchange
protocol in Section III-F.

Data authentication key updating and verification. To
reduce the computation cost for IoT devices, DIoTA minimizes
the use of expensive public key cryptography operations. In
a nutshell, DIoTA allows an IoT device to generate a single
digital signature for a data authentication schema which can
be used for a relatively long time and large amount of data by
updating the key information field multiple times. After a key
updating, the previous key is released to others for the data
authenticity verification, and the IoT device uses the new key
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Fig. 2: The process for an IoT device to send data is divided
into discrete steps, and the IoT device waits for one step to be
finalized before starting the next one. The device submits the
authentication schema before sending real data, and discloses
the secret MAC key used for previous data segment together
with the new data segment. The open of the first MAC key k1
requires the open operation of the commitment scheme. In this
work, the IoT device reveals k1 together with the randomly
selected HMAC key to open the commitment of k1.

to protect next data segments. To implement such a scheme,
the key updating algorithm needs to satisfy two requirements:
• Backward-forward security. Given all existing keys, an

adversary should not be able to learn future keys that have
not been disclosed by the IoT device and he/she cannot
tamper historical data protected by existing keys.

• Public verifiability. Given all existing authentication keys
and a new key, everyone should be able to verify whether
the new key is generated by the legitimate IoT device.

DIoTA uses reversed hash list for the key update to meet
these two requirements. When building the data authenticity
protection schema, the IoT device determines the lifespan field,
which is a positive integer n that specifies how many times it
can update the data authentication key with this schema, and
selects a random MAC key kn, e.g., a 256 bits string. The
device then computes:

kn−1 ← H(kn||n− 1), · · · , k1 ← H(k2||1), (1)

where H(·) is a cryptographic hash function with an adequate
output size, e.g., SHA256. The IoT device uses k1 as the first
authentication key and includes the commitment of k1 in the
data authentication schema. The device then updates the MAC
key from kt−1 to kt, 1 < t ≤ n when necessary.
Data transmission. After the data authentication schema is
accepted by an edge ledger, the IoT device can start to send
data. The device uses two channels for the transmission: one
for actual data and one for authenticity protection information,
which is depicted in Fig. 2. Specifically, the actual data is
sent to connected edge servers and stored together with cloud
servers, while corresponding meta data including authenticity
protection information is sent only to connected edge ledger.
The actual data are divided into segments and the IoT device
generates a MAC for each segment using a different key. When
the (t+ 1)th segment is sent to edge/cloud servers, its MAC
is also sent to the edge ledger and the sender discloses the
MAC key of the segment t, which can be utilized to verify
the corresponding tthdata segment. The last MAC key kn is
selected by the sender device, and other MAC keys are derived
from kn using the key updating method described above.
Data verification and storage. The data from IoT devices
are collected and stored by edge/cloud servers and DIoTA is
responsible for managing and verifying authenticity information.
When the data segment segt is sent and stored by edge/cloud
servers, the corresponding edge ledger cannot verify its
authenticity immediately. Instead, the edge ledger waits for the
corresponding authenticity protection key kt, which is provided
by the IoT device in time period t+1. Then, each edge ledger
node conducts the following checks with kt:

• mact
?
= MAC(segt, kt), t ≥ 1, and

• H(kt||t− 1)
?
= kt−1, t > 1.

Here kt−1 is the previous data authentication key and has
been stored in the edge ledger. Edge ledger nodes then run
the consensus protocol to determine whether to include kt
to the ledger. The data consumer (e.g., an AI model training
module) obtains authenticity information from DIoTA and
verifies whether the data is compromised or not.

E. Key Information Query
DIoTA maintains a large number of keys to facilitate IoT data

authenticity protection. Each key is embedded in a transaction,
and transactions are organized as blocks linked together. During
the operation of DIoTA, a node needs to query the ledger
to obtain corresponding keys for data authenticity validation
and IoT device authentication. Since querying a key does
not require modification of the ledger, these operations will
not trigger the consensus mechanism which is usually more
expensive. Furthermore, though all transactions/blocks are
logically organized in a linear chain structure, DIoTA can
utilize a database system to store them. The order information
can be maintained as part of the database schema and queries
can be efficiently handled.

F. Efficient Information Exchange between Edge Ledgers using
the Global Ledger

Edge ledgers are not connected to each other directly, and
they do not keep copies of other ledgers. Therefore, it is not
trivial for an edge ledger to verify whether a block belongs
to another edge ledger is valid. DIoTA provides a mechanism
to exchange information efficiently and reliably in case the
data user connected to one edge ledger needs to use data
collected by IoT devices connected to another edge ledger.
Without loss of generality, we assume EL1 needs to get a
transaction tx from EL2 through the global ledger GL and
verify its validity. The efficient information exchange protocol
relies on a cryptographic accumulator and works as follows:
• EL2 processes and accepts a new transaction tx:

– EL2 initializes the accumulator value acc when the edge
ledger is set up.

– tx is embedded into a block blk, and EL2 updates the
accumulator to acc′;

– All el2j ∈ EL2 run the consensus protocol to include
both the new block blk and updated accumulator acc′.

• EL2 updates its status to the global ledger GL:
– To reduce the burden of GL, EL2 only updates its status

to GL after a certain number of new blocks are created,
and only sends the accumulator value to GL;

– GL checks whether EL2 has achieved consensus on
the updated accumulator acc′, and includes the pair
(EL2, acc′) into a new block if it passes the checking.

• EL1 checks the validity of tx
– EL1 obtains the current accumulator value of EL2 from

the global ledger GL;
– EL1 requests a proof from EL2 on the block blk that

contains the transaction tx;
– EL2 responds to EL1 with a proof that blk is included

in edge ledger EL2;
– EL1 verifies the proof and then utilizes the information

stored in tx.
This protocol is used for multiple purposes in DIoTA,

including retrieval of certificate information of an IoT device
served by a different edge ledger, checking the authentication
schema and MAC keys stored in another edge ledger.
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IV. ANALYSIS OF DIOTA
In this section, we analyze the performance and security of

DIoTA.

A. Performance Analysis of DIoTA
DIoTA uses data authenticity protection schemas to protect

the authenticity of data collected by IoT devices. For an IoT
device, it only uses a schema to protect a certain amount of
data and then generates a new schema. Therefore, we analyze
the operation complexity for each schema.
Cost of IoT devices. The IoT device itself needs to store a
small amount of data such as its private key, cryptographic
operation parameters, and list of edge ledger nodes. Thus, the
storage is not demanding in IoT devices. We focus on the
computation and communication cost of the IoT device in
DIoTA.
• Preparation of data authentication schema. The IoT device

needs to authenticate the schema to the edge ledger by
generating a digital signature. The computation cost is one
signature generation, and the communication cost is for
transmitting one digital signature plus the schema itself.

• MAC keys generation. To build a schema, the IoT device
pre-computes the reversed hash list, and the number of
hash computation is determined by the lifespan field.
Assuming lifespan is set to numkey, in order to submit
the ith data segment, the IoT device computes numkey − i
hashes on the originally MAC key if it does not store
any intermediate results. Therefore, when the IoT device
does not cache any previous computation results, the
computation complexity is O(num2

key) hash calculations,
and the communication cost is for transmitting numkey
hash values.

• MACs generation. The IoT device is responsible for
generating MACs of collected data using MAC keys. The
computation complexity of this operation is O(szunt ×
numfreq× numkey), which is proportional to the amount of
data that is protected by the given schema. Since only the
computed MACs need to be sent out, the communication
cost is for transmitting numkey MACs.

Cost of the edge ledger nodes. The complexity of operation
of a decentralized ledger is usually measured by the number
of transactions it has to process, and we use this metric to
evaluate the performance of edge ledgers and the global ledger.
An edge ledger mainly processes and stores three types of
transactions: certificates of IoT devices, data authentication
schemas, and MACs of IoT generated data. The edge ledger
only creates certificates related transactions when a new IoT
device is connected to the edge ledger or an existing certificate
of an IoT device is revoked. The frequency of these two
operations is usually very low and most transactions are related
to the data authentication, i.e., data authentication schemas and
MACs created by connected IoT devices. The number of such
transactions is determined by following parameters: (i) numd,
the number of IoT devices connected to the edge ledger;

(ii) numkey, the number of keys that an authentication schema
can support, which is the lifespan of the schema field. The
number of transactions an edge ledger processes for a single
data authenticity protection schema is about numd × numkey.
Cost of the global ledger nodes. The major function of the
global ledger is to monitor and track the updates of each edge
ledger to facilitate the information exchange between different
edge ledgers and prevent edge ledgers from modifying historical
data. Without loss of generality, we assume that each edge

ledger is connected to the same number of IoT devices with
the same data authenticity protection schema configuration and
each device generates data at the same rate. The number of
transactions the global ledger should handle is then determined
by following parameters: (i) num`, the number of edge ledgers
connected to the global ledger; (ii) numaggre, the aggregation
factor (a positive integer) that controls how often updates occur
in the global ledger. The number of transactions the global
ledger handles for a single data authenticity protection schema
is num` × numd × numkey/numaggre.
Latency of data authentication. Besides the latency caused by
the decentralized ledger operations, the key updating frequency
(denoted as numfreq) also affects the waiting time to verify
the authenticity. This is because the sender releases the MAC
key of a data segment after the whole segment is received
by the edge ledger. A larger numfreq means that a single data
authentication key is used to protect more data segments, while
at the same time it also increases the latency as the sender
needs more time to transmit the data.

Note that the block size also affects the performance of
DIoTA but we ignore it in the analysis since it is a general
parameter for all decentralized ledger based systems. With a
large block size, one can usually expect higher throughput
while it may also increase the latency.

B. Security Analysis of DIoTA
Under the framework of DIoTA, data generated by IoT

devices are stored in edge/cloud servers, and DIoTA focuses
on the protection of data authenticity.
Confidentiality of authenticity protection key. When an
adversary learns an unused authenticity protection key, he/she
can generate a valid MAC on arbitrary data. We focus on
the confidentiality of the first authenticity protection key and
the safety of other derived keys is guaranteed by the forward
security feature. Before the first key is disclosed to the public,
it is stored in the edge ledger as a commitment. As the IoT
device keeps the commitment key as a secret, the hiding feature
of the commitment scheme guarantees the confidentiality of
the first authenticity protection key.
Forward security. Forward security requires that when a
key in a key sequence is disclosed, the adversary cannot
guess these keys that have not been disclosed. This feature
is guaranteed by the one-wayness of the cryptographic hash
function. Without loss of generality, we consider the case
where k1, k2, . . . , kt, t < numkey from an IoT device have been
disclosed to the public. If there is an adversary A that can effi-
ciently discover a data authentication key kt′ , t < t′ < numkey,
then A can efficiently reverse a function in the form of
H’() = H(H(· · ·H())), where H() is a secure cryptographic
hash function that takes input with the same size of output.
When we use SHA256 as H() and the input size of H() is
the same the output size, the composition of H() is equivalent
to increasing the number of hash iterations, which does not
affect the preimage resistance feature. Therefore, A cannot
learn an unused authentication key as long as the underlying
cryptographic hash function is preimage resistant and the
original input size is equivalent to the output size of the hash
function.
Backward security. Backward security requires that an ad-
versary knowing all existing MAC keys cannot compromise
historical data. This feature is guaranteed by the immutability
feature of the decentralized ledger. Since all MAC keys and
MAC values are finalized in blocks, the adversary cannot tamper
the historical data unless he/she can take over the ledgers.
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Fig. 3: Performance of transaction
submission.

Fig. 4: Latency of query with nodes in
different locations.

Fig. 5: Throughput of query with nodes
in different locations.

V. IMPLEMENTATION AND EXPERIMENTAL DATA

This section describes the implementation of DIoTA and
discusses the experimental results. The implementation of
DIoTA consists of two parts, the IoT device part and the
edge/global ledger part.

A. Device Side Implementation
Device side implementation is straightforward, we focus

on three operations: generating digital signature on data
authenticity protection schema, calculating hash function for
initial key commitment and key updating, and computing
CMAC [5] of generated data. Note that we do not use HMAC
for data authentication as hash function is used to derive the
sequence of data authentication keys, and using the same hash
function for both key generation and data authentication may
cause security problems. Some experimental results using ARM
Cortex-M processor are summarized as follows [6]: (i) With
curve secp256k1, it takes about 486 ms to generate a signature.
(ii) To compute SHA-256 of 1024 bytes data, it takes 0.6
ms, which equals evaluation of 16 SHA-256 functions, and it
costs about 0.0375 ms to evaluate a single SHA-256 function.
(iii) To compute AES-CMAC of 1024 bytes of data with a
256 bits key, it takes 0.9 ms. Compared with digital signature
operations, the hash and AES-CMAC-256 computation cost is
almost negligible.

B. Edge/Global Ledger Implementation
We use Hyperledger Fabric [7] as the foundation to build

edge ledgers and the global ledger. There are three types of
nodes in Hyperledger Fabric that work together to process a
transaction: peers, endorsers, and orderers. The life cycle of
a transaction is as follows: (i) A peer initializes a transaction
tx and sends it to all endorsers in the ledger. tx can be a
data authentication schema, a MAC, a request of information
from another edge ledger, and a response to a request. (ii) An
endorser who receives tx checks it and signs the transaction
using his/her private key if tx is valid. (iii) A peer collects
all endorsements from endorsers and put them together with
tx , which are then submitted to orderers. (iv) After an orderer
receives tx with endorsements, it checks whether it satisfies the
pre-defined endorsement policy (e.g., all listed endorsers need
to sign), and then tries to pack it to a block and appends to
the ledger. All orderers run the pre-defined consensus protocol
to determine how a transaction should be added. The current
implementation uses Kafka [8] as the consensus protocol. Each
peer node keeps a copy of the ledger.

In DIoTA, edge ledgers and the global ledger are imple-
mented as different channels, i.e., each edge ledger is a channel
and the global ledger is also a channel. Channel is a concept
of Hyperledger Fabric, which is a private subnet maintained
by two or more specific network members for the purpose

of conducting private and confidential transactions. Based on
the original design of Hyperledger Fabric, different channels
cannot talk with each other. This prevents an edge ledger from
interacting with the global ledger. To overcome this challenge,
we enroll one or more peers of an edge ledger to the global
ledger. Each of these nodes keeps two ledgers at the same time.
In order to support information exchange between an edge
leger and the global ledger, we deploy a daemon on the node
that can access both ledgers. From the storage perspective, each
ledger is just a local database, and the daemon can conduct
arbitrary operations on these ledgers. To reduce the complexity,
the daemon only queries the two ledgers, and this does not
affect the operation of the original Hyperledger Fabric system.
We also implement the efficient information exchange protocol
using RSA accumulator [9] with a modular size of 2048 bits
and embed it in the cross-channel query daemon.

We conduct experiments on the developed prototype and
focus on the following metrics:
• The overall throughput/latency of transaction processing.

These metrics reflect how many transactions DIoTA can
process at the same time and how fast it can process
a transaction. The transactions include submission of
the new authenticity protection schemas, key updating
operations, and MACs uploading. Fig. 3 summarize the
experimental results of throughput and latency respectively.
We observe that the number of endorsers does not affect
the performance significantly.

• The latency/throughput of cross-channel queries process-
ing. These two metrics reflect the efficiency of cross-
channel query operations when the data user is served
by an edge ledger that is different from the edge ledger
that serves the IoT devices collecting the data. Fig. 5
and Fig. 4 demonstrates the performance in different
scenarios. The experimental data is collected based on
a minimum cross-channel query requirement which only
involves two edge ledgers and the global ledger. The
latency of such operations is dominated by communication
and the physical locations of the nodes also affect the
performance significantly.

Note that we do not adapt any optimization to the Hyper-
ledger Fabric system itself in our prototype, which is orthogonal
to this work and has been extensively studied [10]. By using
techniques such as in-memory database and reducing message
size for endorsing/ordering, the performance of DIoTA can be
further improved.

VI. RELATED WORKS

In this section, we briefly review related works on using
decentralized ledger for IoT data protection and compare DIoTA
with them.

Li et.al. proposed an efficient digital signature scheme which
allows an IoT device to sign once for data generated in a



7

TABLE I: Comparisons of IoT data authenticity schemes.

scalability lightweight
computation
on IoT side

authenticity
of data at
rest

collaborative
environment
support

[11] na 3 7 7
[12] 7 3 3 3
[13] 7 7 3 3
[14] 7 7 3 3

DIoTA 3 3 3 3

given epoch [11], the goal of which is similar to the data
authenticity protection schema of DIoTA. But this work does
not consider integration with decentralized ledger, and does
not enjoy all the desirable features. Shafagh et.al. designed
a scheme that leverages blockchain to provide an auditable
IoT storage service, which also supports protection of data
authenticity [12]. This work treats blockchain as a black
box and does not consider the scalability issue to support
a large number of IoT devices. Liu et.al. developed an IoT
data authenticity protection scheme that stores encrypted hash
values of generated data in the decentralized ledger [13].
Though it achieves a similar goal, it does not consider the
scalability of the underlying decentralized ledger neither, and
the computation/power limitations of IoT devices are ignored.
Machado et.al. adopted a three layer structure to manage IoT
generated data [14], which is similar to our work. But unlike
DIoTA that uses multiple edge ledgers to serve a large number
of devices, their approach includes three relatively independent
decentralized ledgers running at different layers, which does
not help on scalability.

TABLE I summarizes the comparison between DIoTA and
other IoT data authenticity protection mechanisms, especially
those utilizing decentralized ledger technology.

VII. CONCLUSION

IoT has become an important information collection in-
frastructure for a variety of applications. As the collected
information is used to support decision making and operations,
it is critical to protect the data authenticity. Although digital
signature can be used for device and data authentication, it
does not fit the IoT scenario well because of the large number
of devices in the system and limited device computation/power
capacity. In order to fill the gap, DIoTA integrates a novel data
authenticity protection mechanism with a layered decentralized
ledger structure to achieve system scalability and reduction
of computation burden on IoT devices at the same time. We
implement a prototype of DIoTA using the Hyperledger Fabric
codebase and also evaluate its performance.
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